1
|
Monroy-Pérez E, Herrera-Gabriel JP, Olvera-Navarro E, Ugalde-Tecillo L, García-Cortés LR, Moreno-Noguez M, Martínez-Gregorio H, Vaca-Paniagua F, Paniagua-Contreras GL. Molecular Properties of Virulence and Antibiotic Resistance of Pseudomonas aeruginosa Causing Clinically Critical Infections. Pathogens 2024; 13:868. [PMID: 39452738 PMCID: PMC11510431 DOI: 10.3390/pathogens13100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The increase in the number of hospital strains of hypervirulent and multidrug resistant (MDR) Pseudomonas aeruginosa is a major health problem that reduces medical treatment options and increases mortality. The molecular profiles of virulence and multidrug resistance of P. aeruginosa-associated hospital and community infections in Mexico have been poorly studied. In this study, we analyzed the different molecular profiles associated with the virulence genotypes related to multidrug resistance and the genotypes of multidrug efflux pumps (mex) in P. aeruginosa causing clinically critical infections isolated from Mexican patients with community- and hospital-acquired infections. Susceptibility to 12 antibiotics was determined using the Kirby-Bauer method. The identification of P. aeruginosa and the detection of virulence and efflux pump system genes were performed using conventional PCR. All strains isolated from patients with hospital-acquired (n = 67) and community-acquired infections (n = 57) were multidrug resistant, mainly to beta-lactams (ampicillin [96.7%], carbenicillin [98.3%], cefalotin [97.5%], and cefotaxime [87%]), quinolones (norfloxacin [78.2%]), phenicols (chloramphenicol [91.9%]), nitrofurans (nitrofurantoin [70.9%]), aminoglycosides (gentamicin [75%]), and sulfonamide/trimethoprim (96.7%). Most strains (95.5%) isolated from patients with hospital- and community-acquired infections carried the adhesion (pilA) and biofilm formation (ndvB) genes. Outer membrane proteins (oprI and oprL) were present in 100% of cases, elastases (lasA and lasB) in 100% and 98.3%, respectively, alkaline protease (apr) and alginate (algD) in 99.1% and 97.5%, respectively, and chaperone (groEL) and epoxide hydrolase (cif) in 100% and 97.5%, respectively. Overall, 99.1% of the strains isolated from patients with hospital- and community-acquired infections carried the efflux pump system genes mexB and mexY, while 98.3% of the strains carried mexF and mexZ. These findings show a wide distribution of the virulome related to the genotypic and phenotypic profiles of antibiotic resistance and the origin of the strains isolated from patients with hospital- and community-acquired infections, demonstrating that these molecular mechanisms may play an important role in high-pathogenicity infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Jennefer Paloma Herrera-Gabriel
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Elizabeth Olvera-Navarro
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Lorena Ugalde-Tecillo
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| | - Luis Rey García-Cortés
- Coordinación de Investigación del Estado de México Oriente, Insitituto Mexicano del Seguro Social, Tlalnepantla de Baz 50090, Mexico;
| | - Moisés Moreno-Noguez
- Coordinación Clínica de Educación e Investigación en Salud, Unidad de Medicina Familiar No. 55, Insitituto Mexicano del Seguro Social Estado de México Oriente, Zumpango 55600, Mexico;
| | - Héctor Martínez-Gregorio
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (H.M.-G.); (F.V.-P.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Gloria Luz Paniagua-Contreras
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (J.P.H.-G.); (E.O.-N.); (L.U.-T.)
| |
Collapse
|
2
|
Badillo-Larios NS, Turrubiartes-Martínez EA, Layseca-Espinosa E, González-Amaro R, Pérez-González LF, Niño-Moreno P. Interesting Cytokine Profile Caused by Clinical Strains of Pseudomonas aeruginosa MDR Carrying the exoU Gene. Int J Microbiol 2024; 2024:2748842. [PMID: 38974708 PMCID: PMC11227949 DOI: 10.1155/2024/2748842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in HAIs with two facets: the most studied is the high rate of antimicrobial resistance, and the less explored is the long list of virulence factors it possesses. This study aimed to characterize the virulence genes carried by strains as well as the profile of cytokines related to inflammation, according to the resistance profile presented. This study aims to identify the virulence factors associated with MDR strains, particularly those resistant to carbapenems, and assess whether there is a cytokine profile that correlates with these characteristics. As methodology species were identified by classical microbiological techniques and confirmed by molecular biology, resistance levels were determined by the minimum inhibitory concentration and identification of MDR strains. Virulence factor genotyping was performed using PCR. In addition, biofilm production was assessed using crystal violet staining. Finally, the strains were cocultured with PBMC, and cell survival and the cytokines IL-1β, IL-6, IL-10, IL-8, and TNF-α were quantified using flow cytometry. Bacteremia and nosocomial pneumonia in adults are the most frequent types of infection. In the toxigenic aspect, genes corresponding to the type III secretion system were present in at least 50% of cases. In addition, PBMC exposed to strains of four different categories according to their resistance and toxicity showed a differential pattern of cytokine expression, a decrease in IL-10, IL-6, and IL-8, and an over-secretion of IL-1b. In conclusion, the virulence genes showed a differentiated appearance for the two most aggressive exotoxins of T3SS (exoU and exoS) in multidrug-resistant strains. Moreover, the cytokine profile displays a low expression of cytokines with anti-inflammatory and proinflammatory effects in strains carrying the exoU gene.
Collapse
Affiliation(s)
- Nallely S. Badillo-Larios
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Edgar Alejandro Turrubiartes-Martínez
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Laboratory of Hematology, Faculty of Chemical SciencesAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Esther Layseca-Espinosa
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Faculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Roberto González-Amaro
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Faculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Luis Fernando Pérez-González
- Faculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Central Hospital Dr. Ignacio Morones Prieto, San Luis Potosi, Mexico
| | - Perla Niño-Moreno
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Genetics LaboratoryFaculty of Chemical SciencesAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| |
Collapse
|
3
|
Romero-González LE, Montelongo-Martínez LF, González-Valdez A, Quiroz-Morales SE, Cocotl-Yañez M, Franco-Cendejas R, Soberón-Chávez G, Pardo-López L, Bustamante VH. Pseudomonas aeruginosa Isolates from Water Samples of the Gulf of Mexico Show Similar Virulence Properties but Different Antibiotic Susceptibility Profiles than Clinical Isolates. Int J Microbiol 2024; 2024:6959403. [PMID: 38784405 PMCID: PMC11115996 DOI: 10.1155/2024/6959403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments, including soil, water, and habitats associated with animals, humans, and plants. From a One Health perspective, which recognizes the interconnectedness of human, animal, and environmental health, it is important to study the virulence characteristics and antibiotic susceptibility of environmental bacteria. In this study, we compared the virulence properties and the antibiotic resistance profiles of seven isolates collected from the Gulf of Mexico with those of seven clinical strains of P. aeruginosa. Our results indicate that the marine and clinical isolates tested exhibit similar virulence properties; they expressed different virulence factors and were able to kill Galleria mellonella larvae, an animal model commonly used to analyze the pathogenicity of many bacteria, including P. aeruginosa. In contrast, the clinical strains showed higher antibiotic resistance than the marine isolates. Consistently, the clinical strains exhibited a higher prevalence of class 1 integron, an indicator of anthropogenic impact, compared with the marine isolates. Thus, our results indicate that the P. aeruginosa marine strains analyzed in this study, isolated from the Gulf of Mexico, have similar virulence properties, but lower antibiotic resistance, than those from hospitals.
Collapse
Affiliation(s)
- Luis E. Romero-González
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Luis F. Montelongo-Martínez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Sara E. Quiroz-Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Rafael Franco-Cendejas
- Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra,” Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Coyoacán, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Secker B, Shaw S, Atterbury RJ. Pseudomonas spp. in Canine Otitis Externa. Microorganisms 2023; 11:2650. [PMID: 38004662 PMCID: PMC10673570 DOI: 10.3390/microorganisms11112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Canine otitis externa (OE) is a commonly diagnosed condition seen in veterinary practice worldwide. In this review, we discuss the mechanisms of the disease, with a particular focus on the biological characteristics of Pseudomonas aeruginosa and the impact that antibiotic resistance has on successful recovery from OE. We also consider potential alternatives to antimicrobial chemotherapy for the treatment of recalcitrant infections. P. aeruginosa is not a typical constituent of the canine ear microbiota, but is frequently isolated from cases of chronic OE, and the nature of this pathogen often makes treatment difficult. Biofilm formation is identified in 40-95% of P. aeruginosa from cases of OE and intrinsic and acquired antibiotic resistance, especially resistance to clinically important antibiotics, highlights the need for alternative treatments. The role of other virulence factors in OE remains relatively unexplored and further work is needed. The studies described in this work highlight several potential alternative treatments, including the use of bacteriophages. This review provides a summary of the aetiology of OE with particular reference to the dysbiosis that leads to colonisation by P. aeruginosa and highlights the need for novel treatments for the future management of P. aeruginosa otitis.
Collapse
Affiliation(s)
- Bailey Secker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK
| | - Stephen Shaw
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| | - Robert J. Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK; (B.S.); (S.S.)
| |
Collapse
|
5
|
Impact of fluoroquinolones and aminoglycosides on P. aeruginosa virulence factor production and cytotoxicity. Biochem J 2022; 479:2511-2527. [PMID: 36504127 DOI: 10.1042/bcj20220527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments. ExoU is a phospholipase which causes destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitrothan other antimicrobial classes. Their overuse over the past decade, however, has resulted in the emergence of antibiotic resistance. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered that tobramycin disrupted T3SS expression and reduced both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-t cells at concentrations below the minimal inhibitory concentration (MIC). The fluoroquinolones moxifloxacin and ciprofloxacin, however, up-regulated the T3SS and did not inhibit and may have increased the cytotoxic effects of ExoS and ExoU.
Collapse
|
6
|
Elnagar RM, Elshaer M, Osama Shouman O, Sabry El-Kazzaz S. Type III Secretion System (Exoenzymes) as a Virulence Determinant in Pseudomonas aeruginosa Isolated from Burn Patients in Mansoura University Hospitals, Egypt. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2022. [DOI: 10.30699/ijmm.16.6.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
8
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
9
|
Tympanosclerosis and atherosclerosis plaques: a comparative analytical study on some new microbiological and immunohistochemical aspects. Eur Arch Otorhinolaryngol 2020; 278:3743-3752. [PMID: 33140144 DOI: 10.1007/s00405-020-06451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study was to compare chemical contents, expression of BMP-8a, and the presence of Mycoplasma and ExoS-ExoU exotoxins producing Pseudomonas aeruginosa in tympanosclerosis (TS) and atherosclerosis (AS) plaques. METHODS Thirty-six cases with TS and AS plaques (18 each) were selected and examined for chemical, immunohistochemical, and microbial analysis. SPSS ver. 21 and t test analysis were used for comparing the findings, and the level of significance was considered as p < 0.05. RESULTS TS plaques showed lower carbon, higher calcium, and phosphorous contents compared to AS plaques (p value < 0.05). Chlorine was detected in AS plaques (1.8 w%) which could probably be due to the presence of myeloperoxidase (MPO) in atherosclerotic artery. Contrary to spherical shape of the surface of TS plaques, AS plaques were needle shaped. BMP-8a expression in TS plaques (59.5%) was significantly higher (p value < 0.0001) than AS plaques (20%). Of the 18 TS specimens, 12, 14, and 3 were positive for ExoS, ExoU Pseudomonas aeruginosa, and Mycoplasma genes, respectively, while of the 18 AS specimens, 2, 2, and 3 were positive for ExoS, ExoU Pseudomonas aeruginosa, and Mycoplasma genes, respectively. CONCLUSION TS plaques are different from AS plaques in terms of elemental components, surface morphology, and BMP-8a expression. Therefore, different calcification process and pathogenesis may be responsible for these two diseases. The results of our study showed that both TS and AS plaques have genetic footprint of Mycoplasma, but the level of calcium concentration-dependent exotoxins genes was found only in TS plaques.
Collapse
|
10
|
Exoenzyme Y Contributes to End-Organ Dysfunction Caused by Pseudomonas aeruginosa Pneumonia in Critically Ill Patients: An Exploratory Study. Toxins (Basel) 2020; 12:toxins12060369. [PMID: 32512716 PMCID: PMC7354586 DOI: 10.3390/toxins12060369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes pneumonia in immunocompromised and intensive care unit (ICU) patients. During host infection, P. aeruginosa upregulates the type III secretion system (T3SS), which is used to intoxicate host cells with exoenzyme (Exo) virulence factors. Of the four known Exo virulence factors (U, S, T and Y), ExoU has been shown in prior studies to associate with high mortality rates. Preclinical studies have shown that ExoY is an important edema factor in lung infection caused by P. aeruginosa, although its importance in clinical isolates of P. aeruginosa is unknown. We hypothesized that expression of ExoY would be highly prevalent in clinical isolates and would significantly contribute to patient morbidity secondary to P. aeruginosa pneumonia. A single-center, prospective observational study was conducted at the University of Alabama at Birmingham Hospital. Mechanically ventilated ICU patients with a bronchoalveolar lavage fluid culture positive for P. aeruginosa were included. Enrolled patients were followed from ICU admission to discharge and clinical P. aeruginosa isolates were genotyped for the presence of exoenzyme genes. Ninety-nine patients were enrolled in the study. ExoY was present in 93% of P. aeruginosa clinical isolates. Moreover, ExoY alone (ExoY+/ExoU−) was present in 75% of P. aeruginosa isolates, compared to 2% ExoU alone (ExoY−/ExoU+). We found that bacteria isolated from human samples expressed active ExoY and ExoU, and the presence of ExoY in clinical isolates was associated with end-organ dysfunction. This is the first study we are aware of that demonstrates that ExoY is important in clinical outcomes secondary to nosocomial pneumonia.
Collapse
|
11
|
Mohamed B, Abdel-Samii ZK, Abdel-Aal EH, Abbas HA, Shaldam MA, Ghanim AM. Synthesis of imidazolidine-2,4-dione and 2-thioxoimidazolidin-4-one derivatives as inhibitors of virulence factors production in Pseudomonas aeruginosa. Arch Pharm (Weinheim) 2020; 353:e1900352. [PMID: 32134150 DOI: 10.1002/ardp.201900352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
In an attempt to counteract bacterial pathogenicity, a set of novel imidazolidine-2,4-dione and 2-thioxoimidazolidin-4-one derivatives was synthesized and evaluated as inhibitors of bacterial virulence. The new compounds were characterized and screened for their effects on the expression of virulence factors of Pseudomonas aeruginosa, including protease, hemolysin, and pyocyanin. Imidazolidine-2,4-diones 4c, 4j, and 12a showed complete inhibition of the protease enzyme, and they almost completely inhibited the production of hemolysin at 1/4 MIC (1/4 minimum inhibitory concentration; 1, 0.5, and 0.5 mg/ml, respectively). 2-Thioxoimidazolidin-4-one derivative 7a exhibited the best inhibitory activity (96.4%) against pyocyanin production at 1 mg/ml (1/4 MIC). A docking study was preformed to explore the potential binding interactions with quorum-sensing receptors (LasR and RhlR), which are responsible for the expression of virulence genes.
Collapse
Affiliation(s)
- Basant Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Zakaria K Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Eatedal H Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany M Ghanim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
12
|
Pseudomonas aeruginosa Toxin ExoU as a Therapeutic Target in the Treatment of Bacterial Infections. Microorganisms 2019; 7:microorganisms7120707. [PMID: 31888268 PMCID: PMC6955817 DOI: 10.3390/microorganisms7120707] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa employs the type III secretion system (T3SS) and four effector proteins, ExoS, ExoT, ExoU, and ExoY, to disrupt cellular physiology and subvert the host’s innate immune response. Of the effector proteins delivered by the T3SS, ExoU is the most toxic. In P. aeruginosa infections, where the ExoU gene is expressed, disease severity is increased with poorer prognoses. This is considered to be due to the rapid and irreversible damage exerted by the phospholipase activity of ExoU, which cannot be halted before conventional antibiotics can successfully eliminate the pathogen. This review will discuss what is currently known about ExoU and explore its potential as a therapeutic target, highlighting some of the small molecule ExoU inhibitors that have been discovered from screening approaches.
Collapse
|
13
|
Kocoglu E, Kalcioglu MT, Uzun L, Zengin F, Celik S, Serifler S, Gulbay H, Gonullu N. In Vitro Investigation of the Antibacterial Activity of Nigella sativa Oil on Some of the Most Commonly Isolated Bacteria in Otitis Media and Externa. Eurasian J Med 2019; 51:247-251. [PMID: 31692618 DOI: 10.5152/eurasianjmed.2019.18386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective This study aimed to evaluate the antibacterial efficacy of Nigella sativa (NS) seed oil against the most frequently isolated infectious bacteria of the middle and external ear. Materials and Methods The in vitro antibacterial activity of NS oil was evaluated against 34 clinical isolates of Streptococcus pneumoniae, 32 clinical isolates of Moraxella catarrhalis, 32 clinical isolates of Haemophilus influenzae, and 32 clinical isolates of Pseudomonas aeruginosa. Staphylococcus aureus, Escherichia coli, and P. aeruginosa were also evaluated for their sensitivity to the NS oil. The minimum inhibitory concentration (MIC) of the NS oil was determined via a broth dilution technique. Serial solutions were prepared in a Mueller Hinton-F broth to achieve an ultimate concentration of NS oil within the microplate wells ranging from 256 μg/mL to 0.25 μg/mL. The growth control wells and medium were used for each bacterial strain, and the microplates were incubated at 35°C for 24 h. Those wells having no visible growth and the lowest concentration of NS oil were accepted as showing the MIC. Results In this study, a comparison was made between NS oil and the various antibiotics known to be effective against the bacterial strains mentioned above. The NS was shown to have bactericidal activity against H. influenzae, M. catarrhalis, and S. pneumoniae. However, the NS was not found to be effective against P. aeruginosa at any concentration. Conclusion The results of this laboratory-based study support the use of NS oil as an alternative treatment for ear infections. However, it is necessary to conduct clinical studies to evaluate the antibacterial efficacy of NS oil on patients with ear infections.
Collapse
Affiliation(s)
- Esra Kocoglu
- Department of Clinical Microbiology, İstanbul Medeniyet University School of Medicine, İstanbul, Turkey
| | - M Tayyar Kalcioglu
- Department of Otorhinolaryngology, İstanbul Medeniyet University School of Medicine, İstanbul, Turkey
| | - Lokman Uzun
- Department of Otorhinolaryngology, İstanbul Medeniyet University School of Medicine, İstanbul, Turkey
| | - Ferhat Zengin
- Department of Clinical Microbiology, İstanbul Medeniyet University School of Medicine, İstanbul, Turkey
| | - Serdal Celik
- Department of Otorhinolaryngology, İstanbul Medeniyet University School of Medicine, İstanbul, Turkey
| | - Serkan Serifler
- Department of Otorhinolaryngology, İstanbul Medeniyet University School of Medicine, İstanbul, Turkey
| | - Hanife Gulbay
- Department of Clinical Microbiology, İstanbul University-Cerrahpasa, Cerrahpasa School of Medicine, İstanbul, Turkey
| | - Nevriye Gonullu
- Department of Clinical Microbiology, İstanbul University-Cerrahpasa, Cerrahpasa School of Medicine, İstanbul, Turkey
| |
Collapse
|
14
|
Subedi D, Vijay AK, Kohli GS, Rice SA, Willcox M. Association between possession of ExoU and antibiotic resistance in Pseudomonas aeruginosa. PLoS One 2018; 13:e0204936. [PMID: 30265709 PMCID: PMC6161911 DOI: 10.1371/journal.pone.0204936] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022] Open
Abstract
Virulent strains of Pseudomonas aeruginosa are often associated with an acquired cytotoxic protein, exoenzyme U (ExoU) that rapidly destroys the cell membranes of host cells by its phospholipase activity. Strains possessing the exoU gene are predominant in eye infections and are more resistant to antibiotics. Thus, it is essential to understand treatment options for these strains. Here, we have investigated the resistance profiles and genes associated with resistance for fluoroquinolone and beta-lactams. A total of 22 strains of P. aeruginosa from anterior eye infections, microbial keratitis (MK), and the lungs of cystic fibrosis (CF) patients were used. Based on whole genome sequencing, the prevalence of the exoU gene was 61.5% in MK isolates whereas none of the CF isolates possessed this gene. Overall, higher antibiotic resistance was observed in the isolates possessing exoU. Of the exoU strains, all except one were resistant to fluoroquinolones, 100% were resistant to beta-lactams. 75% had mutations in quinolone resistance determining regions (T81I gyrA and/or S87L parC) which correlated with fluoroquinolone resistance. In addition, exoU strains had mutations at K76Q, A110T, and V126E in ampC, Q155I and V356I in ampR and E114A, G283E, and M288R in mexR genes that are associated with higher beta-lactamase and efflux pump activities. In contrast, such mutations were not observed in the strains lacking exoU. The expression of the ampC gene increased by up to nine-fold in all eight exoU strains and the ampR was upregulated in seven exoU strains compared to PAO1. The expression of mexR gene was 1.4 to 3.6 fold lower in 75% of exoU strains. This study highlights the association between virulence traits and antibiotic resistance in pathogenic P. aeruginosa.
Collapse
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- * E-mail:
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Gurjeet Singh Kohli
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Scott A. Rice
- The Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- The School of Biological Sciences, Nanyang Technological University, Singapore
- The ithree institute, The University of Technology Sydney, Sydney NSW Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Sawa T, Hamaoka S, Kinoshita M, Kainuma A, Naito Y, Akiyama K, Kato H. Pseudomonas aeruginosa Type III Secretory Toxin ExoU and Its Predicted Homologs. Toxins (Basel) 2016; 8:toxins8110307. [PMID: 27792159 PMCID: PMC5127104 DOI: 10.3390/toxins8110307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa ExoU, a type III secretory toxin and major virulence factor with patatin-like phospholipase activity, is responsible for acute lung injury and sepsis in immunocompromised patients. Through use of a recently updated bacterial genome database, protein sequences predicted to be homologous to Ps. aeruginosa ExoU were identified in 17 other Pseudomonas species (Ps. fluorescens, Ps. lundensis, Ps. weihenstephanensis, Ps. marginalis, Ps. rhodesiae, Ps. synxantha, Ps. libanensis, Ps. extremaustralis, Ps. veronii, Ps. simiae, Ps. trivialis, Ps. tolaasii, Ps. orientalis, Ps. taetrolens, Ps. syringae, Ps. viridiflava, and Ps. cannabina) and 8 Gram-negative bacteria from three other genera (Photorhabdus, Aeromonas, and Paludibacterium). In the alignment of the predicted primary amino acid sequences used for the phylogenetic analyses, both highly conserved and nonconserved parts of the toxin were discovered among the various species. Further comparative studies of the predicted ExoU homologs should provide us with more detailed information about the unique characteristics of the Ps. aeruginosa ExoU toxin.
Collapse
Affiliation(s)
- Teiji Sawa
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Saeko Hamaoka
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Atsushi Kainuma
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Yoshifumi Naito
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Koichi Akiyama
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Hideya Kato
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|