1
|
Wang R, Liao Z, Liu C, Yu S, Xiang K, Wu T, Feng J, Ding S, Yu T, Cheng G, Li S. CRABP2 promotes cell migration and invasion by activating PI3K/AKT and MAPK signalling pathways via upregulating LAMB3 in prostate cancer. J Biochem 2024; 176:313-324. [PMID: 39038078 DOI: 10.1093/jb/mvae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024] Open
Abstract
Prostate cancer (PCa) has become a worldwide health burden among men. Previous studies have suggested that cellular retinoic acid binding protein 2 (CRABP2) significantly affects the regulation of cell proliferation, motility and apoptosis in multiple cancers; however, the effect of CRABP2 on PCa is poorly reported. CRABP2 expression in different PCa cell lines and its effect on different cellular functions varied. While CRABP2 promotes cell migration and invasion, it appears to inhibit cell proliferation specifically in PC-3 cells. However, the proliferation of DU145 and 22RV1 cells did not appear to be significantly affected by CRABP2. Additionally, CRABP2 had no influence on the cell cycle distribution of PCa cells. The RNA-seq assay showed that overexpressing CRABP2 upregulated laminin subunit beta-3 (LAMB3) mRNA expression, and the enrichment analyses revealed that the differentially expressed genes were enriched in the phosphoinositide 3-kinase (PI3K)/activated protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) signalling pathways. The following western blot experiments also confirmed the upregulated LAMB3 protein level and the activation of the PI3K/AKT and MAPK signalling pathways. Moreover, overexpressing CRABP2 significantly inhibited tumour growth in vivo. In conclusion, CRABP2 facilitates cell migration and invasion by activating PI3K/AKT and MAPK signalling pathways through upregulating LAMB3 in PCa.
Collapse
Affiliation(s)
- Rui Wang
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Zhaoping Liao
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Chunhua Liu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Shifang Yu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Kaihua Xiang
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Ting Wu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Jie Feng
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Senjuan Ding
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Tingao Yu
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Gang Cheng
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| | - Sanlian Li
- Department of Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
2
|
Katayama S, Koga K, Fujimoto M, Matsuzaki I, Nabeshima K, Imafuku S, Hamasaki M. Expression of laminin332 γ2 at the invasive front is associated with tumor budding and poor prognosis in cutaneous squamous cell carcinoma. J Dermatol 2023; 50:1585-1593. [PMID: 37752805 DOI: 10.1111/1346-8138.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Laminin332 is a glycoprotein consisting of α3/β3/γ2 chains, of which the γ2 chain (Ln-γ2) is expressed in tumor cells at the invasive front in many types of malignant tumors. We have previously reported that Ln-γ2 is associated with tumor invasion of cutaneous squamous cell carcinoma (cSCC) in vivo and in vitro. Recently, tumor budding (TB; invasion patterns in small clusters of less than five cancer cells in the stroma at the invasive front) has been reported to be a risk factor for lymph node metastasis in cSCC. Based on these findings, we speculated that expression of Ln-γ2 is related to TB in cSCC and would be an invasive factor that causes lymph node metastasis. In this study, we investigated the relationship between Ln-γ2 expression and clinicopathological findings, including TB, in 102 cases of cSCC using immunohistochemistry. The results showed that high expression of Ln-γ2 at the invasive front correlated with a high TB score. In addition, high Ln-γ2 expression at the invasive front was also associated with lymphatic invasion, lymph node metastasis, and poor prognosis (death or recurrence), as in TB. Furthermore, we showed a positive association between Ln-γ2 expression at the invasive front and Yes-associated protein (YAP) expression in the Hippo pathway. Our results suggest that Ln-γ2 expression at the invasive front may have a role in TB formation via YAP and contribute to prognosis by causing lymphatic invasion and lymph node metastasis. The expression of Ln-γ2 would be useful for risk assessment of lymph node metastasis and poor prognosis in routine practice of cSCC.
Collapse
Affiliation(s)
- Shiori Katayama
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
- Department of Dermatology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Masakazu Fujimoto
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ibu Matsuzaki
- Department of Human Pathology, Wakayama Medical University, Wakayama, Japan
| | - Kazuki Nabeshima
- Department of Clinical Pathology, Pathological Diagnosis Center, Fukuoka Tokushukai Hospital, Kasuga, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| |
Collapse
|
3
|
Abd Wahab NA, Abas F, Othman I, Naidu R. Diarylpentanoid (1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one) (MS13) Exhibits Anti-proliferative, Apoptosis Induction and Anti-migration Properties on Androgen-independent Human Prostate Cancer by Targeting Cell Cycle-Apoptosis and PI3K Signalling Pathways. Front Pharmacol 2021; 12:707335. [PMID: 34366863 PMCID: PMC8343533 DOI: 10.3389/fphar.2021.707335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Diarylpentanoids exhibit a high degree of anti-cancer activity and stability in vitro over curcumin in prostate cancer cells. Hence, this study aims to investigate the effects of a diarylpentanoid, 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one (MS13) on cytotoxicity, anti-proliferative, apoptosis-inducing, anti-migration properties, and the underlying molecular mechanisms on treated androgen-independent prostate cancer cells, DU 145 and PC-3. A cell viability assay has shown greater cytotoxicity effects of MS13-treated DU 145 cells (EC50 7.57 ± 0.2 µM) and PC-3 cells (EC50 7.80 ± 0.7 µM) compared to curcumin (EC50: DU 145; 34.25 ± 2.7 µM and PC-3; 27.77 ± 6.4 µM). In addition, MS13 exhibited significant anti-proliferative activity against AIPC cells compared to curcumin in a dose- and time-dependent manner. Morphological observation, increased caspase-3 activity, and reduced Bcl-2 protein levels in these cells indicated that MS13 induces apoptosis in a time- and dose-dependent. Moreover, MS13 effectively inhibited the migration of DU 145 and PC-3 cells. Our results suggest that cell cycle-apoptosis and PI3K pathways were the topmost significant pathways impacted by MS13 activity. Our findings suggest that MS13 may demonstrate the anti-cancer activity by modulating DEGs associated with the cell cycle-apoptosis and PI3K pathways, thus inhibiting cell proliferation and cell migration as well as inducing apoptosis in AIPC cells.
Collapse
Affiliation(s)
- Nurul Azwa Abd Wahab
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
4
|
Li L, Wei JR, Dong J, Lin QG, Tang H, Jia YX, Tan W, Chen QY, Zeng TT, Xing S, Qin YR, Zhu YH, Li Y, Guan XY. Laminin γ2-mediating T cell exclusion attenuates response to anti-PD-1 therapy. SCIENCE ADVANCES 2021; 7:7/6/eabc8346. [PMID: 33536206 PMCID: PMC7857690 DOI: 10.1126/sciadv.abc8346] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/17/2020] [Indexed: 05/10/2023]
Abstract
PD-1/PD-L1 blockade therapies provide notable clinical benefits for patients with advanced cancers, but the factors influencing the effectiveness of the treatment remain incompletely cataloged. Here, the up-regulation of laminin γ2 (Ln-γ2) predicted the attenuated efficacy of anti-PD-1 drugs and was associated with unfavorable outcomes in patients with lung cancer or esophageal cancer. Furthermore, Ln-γ2 was transcriptionally activated by transforming growth factor-β1 (TGF-β1) secreted from cancer-associated fibroblasts via JNK/AP1 signaling, which blocked T cell infiltration into the tumor nests by altering the expression of T cell receptors. Coadministration of the TGF-β receptor inhibitor galunisertib and chemotherapy drugs provoked vigorous antitumor activity of anti-PD-1 therapy in mouse tumor models. Therefore, Ln-γ2 may represent a useful biomarker to optimize clinical decisions and predict the response of cancer patients to treatment with anti-PD-1 drugs.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong 00852, China
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, Shenzhen 518058, China
| | - Jia-Ru Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Dong
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qing-Guang Lin
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hong Tang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yong-Xu Jia
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Wanlin Tan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qing-Yun Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shan Xing
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan-Ru Qin
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong 00852, China
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, Shenzhen 518058, China
- Department of Clinical Oncology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
5
|
Huang C, Chen J. Laminin‑332 mediates proliferation, apoptosis, invasion, migration and epithelial‑to‑mesenchymal transition in pancreatic ductal adenocarcinoma. Mol Med Rep 2021; 23:11. [PMID: 33179081 PMCID: PMC7673329 DOI: 10.3892/mmr.2020.11649] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
The poor prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is primarily due to the invasive and metastatic behaviors of this disease. Laminin‑332 (LM‑332) is a key component of the basement membrane barrier, and is associated with tumor metastasis. The present study provides evidence towards the potential function of LM‑332 in carcinoma, indicating the distinct roles of the three LM‑332 subunits (α3, β3 and γ2) in cell proliferation, migration, invasion, apoptosis and the epithelial‑to‑mesenchymal transition (EMT) in cancer. The roles of the α3, β3 and γ2 subunits in the malignant biological behavior of PDAC were investigated in the present study. It was revealed that the α3, β3 and γ2 subunits were upregulated in PDAC. Inhibition of all LM‑332 subunits abrogated the tumorigenic outcomes, which included cell proliferation, apoptosis, invasion, migration and EMT in vitro. However, the three LM‑332 subunits had different degrees of effects on biological behavior. It was observed that LAMA3 (α3) had a stronger effect on cell proliferation, migration and invasion. In addition, LAMB3 (β3) knockdown significantly increased E‑cadherin levels and decreased vimentin levels, indicating that LAMB3 was associated with EMT. Likewise, LAMC2 (γ2) mediated proliferation, apoptosis, invasion and migration. However, small interfering (si)‑LAMC2 promoted the progression of EMT, which was the opposite effect to that of si‑LAMB3. The LM‑332 subunits (α3, β3 and γ2) may be novel therapeutic targets of PDAC in the future.
Collapse
Affiliation(s)
- Caiqun Huang
- Department of Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
6
|
Yang C, Liu Z, Zeng X, Wu Q, Liao X, Wang X, Han C, Yu T, Zhu G, Qin W, Peng T. Evaluation of the diagnostic ability of laminin gene family for pancreatic ductal adenocarcinoma. Aging (Albany NY) 2020; 11:3679-3703. [PMID: 31182680 PMCID: PMC6594799 DOI: 10.18632/aging.102007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
A poor outcome for pancreatic ductal adenocarcinoma (PDAC) patients is still a challenge worldwide. The aim of our study is to investigate the potential of key laminin subunits for being used both as a diagnostic and prognostic biomarker for PDAC patients. We evaluated the mRNA expression and prognostic value of laminin gene family in PDAC tissues using online public databases. Moreover, the relationship between key laminin subunits in PDAC blood cells and circulating tumor cells (CTCs) and the distinguishing ability of joint serum levels with carbohydrate antigen 19-9 (CA19-9) was analyzed. Two key differentially expressed subunits (LAMA3 and LAMC2) that are associated with prognosis of PDAC patients were found to show a potential for distinguishing between PDAC and non-tumor tissues. LAMA3 and LAMC2 expression were found to be positively related with CTC quantity in PDAC blood (R=0.628, p=0.029; R=0.776, p=0.003, respectively) using IgG chips. Furthermore, serum LAMC2 levels offered significant improvement over using CA19-9 alone for the discrimination of PDAC. Joint serum LAMC2 and CA19-9 levels increased the net benefit proportion in early stage/operational PDAC patients. Using integrated profiling, we identified LAMA3 and LAMC2 as potential therapeutic targets and prognostic markers for PDAC, for which further validation is warranted.
Collapse
Affiliation(s)
- Chengkun Yang
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zhengqian Liu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xianmin Zeng
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Qiongyuan Wu
- Department of Tuina, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Province, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The first Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
7
|
|
8
|
Chen J, Zhang H, Luo J, Wu X, Li X, Zhao X, Zhou D, Yu S. Overexpression of α3, β3 and γ2 chains of laminin-332 is associated with poor prognosis in pancreatic ductal adenocarcinoma. Oncol Lett 2018; 16:199-210. [PMID: 29928402 PMCID: PMC6006395 DOI: 10.3892/ol.2018.8678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a worldwide health problem. Early diagnosis and assessment may enhance the quality of life and survival of patients. The present study investigated the potential correlations between the gene and protein expression of laminin-332 (LM-332 or laminin-5) and clinicopathological factors as well as evaluating its influence on the survival of patients with PDA. The expression of LM-332 subunit mRNAs in pancreatic carcinoma specimens from 37 patients was investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Using immunohistochemical methods, the protein expressions of the three chains of LM-322 (LNα3, LNβ3 and LNγ2) were determined in 96 pancreatic carcinoma specimens, for association analysis with clinicopathological characteristics from patient data. The results of the prognosis analysis of three mRNAs expression datasets were validated in The Cancer Genome Atlas datasets. RT-qPCR results indicated that the overall relative values of LNα3 and LNγ2 mRNAs were increased in pancreatic carcinoma compared with the control. In immunostaining analyses LNα3 and LNγ2 expression was observed in all tumor tissues from the 96 patient samples. The expression levels of LNα3, LNβ3 and LNγ2 were associated with each other. LNα3 and LNγ2 positivity was significantly associated with differentiation, depth of invasion and advanced stage (P<0.05). The samples were classified into three groups: Basement membrane (B) type, cytoplasmic (C) type and mixed (M) type, according to their LNγ2 immunohistochemical expression patterns. The B type correlated significantly with differentiation (P=0.010) and the M type was significantly associated with hepatic metastasis (P=0.031). Patients with B-type LNγ2 demonstrated significantly better outcomes than patients with the C or M type (P=0.012 and P=0.003, respectively). Overexpression of the α3, β3 and γ2 chains of LM-332 may serve an important role in the progression and prognosis of PDA.
Collapse
Affiliation(s)
- Jun Chen
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Hao Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Jiansheng Luo
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xiaokang Wu
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xueming Li
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Xinyi Zhao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dongkai Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shian Yu
- Division of Hepatobiliary and Pancreatic Surgery, Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
9
|
Ribeiro JR, Gaudet HM, Khan M, Schorl C, James NE, Oliver MT, DiSilvestro PA, Moore RG, Yano N. Human Epididymis Protein 4 Promotes Events Associated with Metastatic Ovarian Cancer via Regulation of the Extracelluar Matrix. Front Oncol 2018; 7:332. [PMID: 29404274 PMCID: PMC5786890 DOI: 10.3389/fonc.2017.00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/26/2017] [Indexed: 01/06/2023] Open
Abstract
Human epididymis protein 4 (HE4) has received much attention recently due to its diagnostic and prognostic abilities for epithelial ovarian cancer. Since its inclusion in the Risk of Ovarian Malignancy Algorithm (ROMA), studies have focused on its functional effects in ovarian cancer. Here, we aimed to investigate the role of HE4 in invasion, haptotaxis, and adhesion of ovarian cancer cells. Furthermore, we sought to gain an understanding of relevant transcriptional profiles and protein kinase signaling pathways mediated by this multifunctional protein. Exposure of OVCAR8 ovarian cancer cells to recombinant HE4 (rHE4) promoted invasion, haptotaxis toward a fibronectin substrate, and adhesion onto fibronectin. Overexpression of HE4 or treatment with rHE4 led to upregulation of several transcripts coding for extracellular matrix proteins, including SERPINB2, GREM1, LAMC2, and LAMB3. Gene ontology indicated an enrichment of terms related to extracellular matrix, cell migration, adhesion, growth, and kinase phosphorylation. LAMC2 and LAMB3 protein levels were constitutively elevated in cells overexpressing HE4 and were upregulated in a time-dependent manner in cells exposed to rHE4 in the media. Deposition of laminin-332, the heterotrimer comprising LAMC2 and LAMB3 proteins, was increased in OVCAR8 cells treated with rHE4 or conditioned media from HE4-overexpressing cells. Enzymatic activity of matriptase, a serine protease that cleaves laminin-332 and contributes to its pro-migratory functional activity, was enhanced by rHE4 treatment in vitro. Proteomic analysis revealed activation of focal adhesion kinase signaling in OVCAR8 cells treated with conditioned media from HE4-overexpressing cells. Focal adhesions were increased in cells treated with rHE4 in the presence of fibronectin. These results indicate a direct role for HE4 in mediating malignant properties of ovarian cancer cells and validate the need for HE4-targeted therapies that will suppress activation of oncogenic transcriptional activation and signaling cascades.
Collapse
Affiliation(s)
- Jennifer R. Ribeiro
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Hilary M. Gaudet
- Department of Chemistry, Wheaton College, Norton, MA, United States
| | - Mehreen Khan
- Department of Chemistry, Wheaton College, Norton, MA, United States
| | - Christoph Schorl
- Center for Genomics and Proteomics, Genomics Core Facility, Brown University, Providence, RI, United States
| | - Nicole E. James
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States
| | - Matthew T. Oliver
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Paul A. DiSilvestro
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
| | - Richard G. Moore
- Department of Obstetrics and Gynecology, Wilmot Cancer Institute, Division of Gynecologic Oncology, University of Rochester Medical Center, Rochester, NY, United States
| | - Naohiro Yano
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Program in Women’s Oncology, Women and Infants Hospital, Providence, RI, United States
- Roger Williams Medical Center, Department of Surgery, Boston University Medical School, Providence, RI, United States
| |
Collapse
|
10
|
Khaustova NA, Maltseva DV, Oliveira-Ferrer L, Stürken C, Milde-Langosch K, Makarova JA, Rodin S, Schumacher U, Tonevitsky AG. Selectin-independent adhesion during ovarian cancer metastasis. Biochimie 2017; 142:197-206. [PMID: 28919578 DOI: 10.1016/j.biochi.2017.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Ovarian cancer (OvCa) progression mainly takes place by intraperitoneal spread. Adhesion of tumor cells to the mesothelial cells which form the inner surface of the peritoneum is a crucial step in this process. Cancer cells use in principle different molecules of the leukocyte adhesion cascade to facilitate adhesion. This cascade is initiated by selectin-ligand interactions followed by integrin - extracellular matrix protein interactions. Here we address the question whether all tumor cells predominantly employ selectin-dependent leukocyte-like adhesion cascade (SDAC) or whether they use integrin mediated adhesion for OvCa progression as well. METHODS A comparative transcriptomic analysis of the human OvCa cell lines OVCAR8 and SKOV3 was performed. Intraperitoneal xenograft model of OVCAR8 cells was used to determine whether there is a correlation between SDAC gene expression and the metastatic potential of the control cells and the cells overexpressing c-Fos. Transcriptomic analysis of OVCAR8 and SKOV3 samples was performed using microarrays. RESULTS One-third of the protein-coding genes involved in SDAC exhibited lower expression levels in OVCAR8 than in SKOV3 cells. In contrast to SKOV3 cells, c-Fos overexpression in OVCAR8 cells did not significantly influence the expression of SDAC genes. Intraperitoneal xenograft model of OVCAR8 cells unexpectedly demonstrated that the aggressiveness of OVCAR8 tumors was not depended on the c-Fos expression level and was comparable to that of SKOV3 control tumors. Gene expression analysis of tumors suggests that SKOV3-derived tumor progression was mainly depended on SDAC. Progression of OVCAR8 tumors relied on other cell adhesion molecules that do not interact with selectins. CONCLUSIONS High expression of c-Fos in ovarian cancer cells is not always associated with reduced metastatic potential. Low expression level of SDAC genes may not ensure low OvCa metastatic potential hence alternative adhesion mechanisms involving laminin-integrin interactions exist as well.
Collapse
Affiliation(s)
| | | | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Christine Stürken
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Karin Milde-Langosch
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | - Julia A Makarova
- P. Herzen Moscow Oncology Research Institute, Moscow, 125284, Russia.
| | - Sergey Rodin
- SRC Bioclinicum, Moscow, 115088, Russia; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20246, Germany.
| | | |
Collapse
|