1
|
Zhao J, Li Z, Zhang H, Qin T, Zhao J, Pei Q. Recombinant hirudin suppresses angiogenesis of diffuse large B-cell lymphoma through regulation of the PAR-1-VEGF. Chem Biol Drug Des 2024; 103:e14533. [PMID: 38684373 DOI: 10.1111/cbdd.14533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/30/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Hirudin is one of the specific inhibitors of thrombin, which has been confirmed to have strong bioactivities, including inhibiting tumors. However, the function and mechanism of hirudin and protease-activated receptor 1 (PAR-1) in diffuse large B-cell lymphoma (DLBCL) have not been clear. Detecting the expression PAR-1 in DLBCL tissues and cells by RT-qPCR and IHC. Transfected sh-NC, sh-PAR-1, or pcDNA3.1-PAR-1 in DLBCL cells or processed DLBCL cells through added thrombin, Vorapaxar, Recombinant hirudin (RH), or Na2S2O4 and co-culture with EA.hy926. And built DLBCL mice observed tumor growth. Detecting the expression of related genes by RT-qPCR, Western blot, IHC, and immunofluorescence, measured the cellular hypoxia with Hypoxyprobe-1 Kit, and estimated the cell inflammatory factors, proliferation, migration, invasion, and apoptosis by ELISA, CCK-8, flow cytometry, wound-healing and Transwell. Co-immunoprecipitation and pull-down measurement were used to verify the relationship. PAR-1 was highly expressed in DLBCL tissues and cells, especially in SUDHL2. Na2S2O4 induced SUDHL2 hypoxia, and PAR-1 did not influence thrombin-activated hypoxia. PAR-1 could promote SUDHL2 proliferation, migration, and invasion, and it was unrelated to cellular hypoxia. PAR-1 promoted proliferation, migration, and angiogenesis of EA.hy926 or SUDHL2 through up-regulation vascular endothelial growth factor (VEGF). RH inhibited tumor growth, cell proliferation, and migration, promoted apoptosis of DLBCL, and inhibited angiogenesis by down-regulating PAR-1-VEGF. RH inhibits proliferation, migration, and angiogenesis of DLBCL cells by down-regulating PAR-1-VEGF.
Collapse
MESH Headings
- Humans
- Hirudins/pharmacology
- Receptor, PAR-1/metabolism
- Receptor, PAR-1/antagonists & inhibitors
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Animals
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Mice
- Cell Line, Tumor
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Apoptosis/drug effects
- Recombinant Proteins/pharmacology
- Recombinant Proteins/metabolism
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Angiogenesis
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zihui Li
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Haixi Zhang
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, Kunming, China
| | - Tao Qin
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, Kunming, China
| | - Juan Zhao
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, Kunming, China
| | - Qiang Pei
- Department of Hematology, The First People's Hospital of Yunnan Province, Kunming, China
- Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Yunnan Province Clinical Center for Hematologic Disease, Kunming, China
| |
Collapse
|
2
|
Ribatti D, Tamma R, Annese T, d’Amati A, Ingravallo G, Specchia G. Vascular Growth in Lymphomas: Angiogenesis and Alternative Ways. Cancers (Basel) 2023; 15:3262. [PMID: 37370872 PMCID: PMC10296318 DOI: 10.3390/cancers15123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The formation of new blood vessels is a critical process for tumor growth and may be achieved through different mechanisms. Angiogenesis represents the first described and most studied mode of vessel formation, but tumors may also use alternative ways to secure blood supply and eventually acquire resistance to anti-angiogenic treatments. These non-angiogenic mechanisms have been described more recently, including intussusceptive microvascular growth (IMG), vascular co-option, and vasculogenic mimicry. Like solid tumors, angiogenic and non-angiogenic pathways in lymphomas play a fundamental role in tumor growth and progression. In view of the relevant prognostic and therapeutic implications, a comprehensive understanding of these mechanisms is of paramount importance for improving the efficacy of treatment in patients with lymphoma. In this review, we summarize the current knowledge on angiogenic and non-angiogenic mechanisms involved in the formation of new blood vessels in Hodgkin's and non-Hodgkin's lymphomas.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
| | - Roberto Tamma
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
| | - Tiziana Annese
- Department of Medicine and Surgery, Libera Università del Mediterraneo (LUM) “Giuseppe Degennaro”, 70124 Bari, Italy;
| | - Antonio d’Amati
- Department of Translational Biomedicine and Neurosciences, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (R.T.); (A.d.)
- Section of Anatomical and Molecular Pathology, Department of Precision and Regenerative Medicine and Jonian Area, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Anatomical and Molecular Pathology, Department of Precision and Regenerative Medicine and Jonian Area, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| |
Collapse
|
3
|
Histopathological Evaluation of Angiogenic Markers in Non-Hodgkin's Lymphoma. J Lab Physicians 2023. [DOI: 10.1055/s-0042-1760400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Background Angiogenesis plays a key role in the development, maintenance, and progression of tumor. The incidence of non-Hodgkin's lymphoma (NHL) is increasing from the past three decades.
Materials and Methods The aim of the study is to evaluate microvessel density (MVD) using CD34 monoclonal antibody and vascular endothelial growth factor (VEGF) using monoclonal antibody that were studied in pretreatment paraffin-embedded tissue samples of 60 cases.
Results MVD was found to be increased in parallel with increasing grade of tumor. B-NHL had a mean MVD of 79.5 ± 8.8 (no./mm2), while T-NHL had a mean MVD of 183 ± 37.6 (no./mm2). VEGF expression was seen in 42 cases (70%), 20 cases (33.3%) showed strong VEGF expression, and the remainder showed either weak (36.6%) or no (30%) staining. Strong VEGF expression is seen in 100% cases of T-NHL and 77.7% cases of B-NHL. Mean MVD and VEGF expression was found to be correlated significantly with the histological grade of NHL (p = 0.001 and p = 0.000, respectively). Average microvessel counts were 53, 82.9, and 130.8 vessels (no./mm2) for negative, weak, and strong VEGF staining, respectively. These differences were statistically significant (p = 0.005 for strong vs. negative and p = 0.091 for strong vs. weak VEGF staining individually).
Conclusion As the grade of tumor progresses, the angiogenic potential also advances which seems to depend on VEGF. The presence of higher MVD in high-grade lymphomas can be utilized for antiangiogenic drugs.
Collapse
|
4
|
B-cell non-Hodgkin lymphoma: importance of angiogenesis and antiangiogenic therapy. Angiogenesis 2020; 23:515-529. [PMID: 32451774 DOI: 10.1007/s10456-020-09729-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is critical for the initiation and progression of solid tumors, as well as hematological malignancies. While angiogenesis in solid tumors has been well characterized, a large body of investigation is devoted to clarify the impact of angiogenesis on lymphoma development. B-cell non-Hodgkin lymphoma (B-NHL) is the most common lymphoid malignancy with a highly heterogeneity. The malignancy remains incurable despite that the addition of rituximab to conventional chemotherapies provides substantial improvements. Several angiogenesis-related parameters, such as proangiogenic factors, circulating endothelial cells, microvessel density, and tumor microenvironment, have been identified as prognostic indicators in different types of B-NHL. A better understanding of how these factors work together to facilitate lymphoma-specific angiogenesis will help to design better antiangiogenic strategies. So far, VEGF-A monoclonal antibodies, receptor tyrosine kinase inhibitors targeting VEGF receptors, and immunomodulatory drugs with antiangiogenic activities are being tested in preclinical and clinical studies. This review summarizes recent advances in the understanding of the role of angiogenesis in B-NHL, and discusses the applications of antiangiogenic therapies.
Collapse
|
5
|
Tanase C, Popescu ID, Enciu AM, Gheorghisan-Galateanu AA, Codrici E, Mihai S, Albulescu L, Necula L, Albulescu R. Angiogenesis in cutaneous T-cell lymphoma - proteomic approaches. Oncol Lett 2019; 17:4060-4067. [PMID: 30944599 PMCID: PMC6444338 DOI: 10.3892/ol.2018.9734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
Neoangiogenesis plays an important role in cutaneous lymphoma pathogenesis. Cutaneous T-cell lymphoma (CTCL) is characterized by the presence of malignant T-cell clones in the skin. Vascular microenvironment of lymphomas accelerates neoangiogenesis through several factors released by tumoral cells: VEGF family, bFGF and PIGF. Tumor stroma (fibroblasts, inflammatory and immune cells) also plays a crucial role, by providing additional angiogenic factors. The angiogenic process through the VEGF-VEGFR axis can promote survival, proliferation and metastasis via autocrine mechanisms in cutaneous lymphomas. Microvascular density (MVD) measures the neo-vascularization of cutaneous lymphoma, generated by the response of tumor cells, proangiogenic stromal cells, and benign T/B lymphocytes within the tumor inflammatory infiltrate. Pro-angiogenic proteins have been found to indicate the evolution and prognosis in patients with CTCL. In conclusion, anti-angiogenic therapeutic protocols can target tumor vasculature or malignant tumor cells directly or through a large number of combinations with other drugs. The integration of proteomics into clinical practice based on high-throughput technologies leads to the development of personalized medicine, adapting the specific biomarkers to the application of cancer-type specific individual drug targets.
Collapse
Affiliation(s)
- Cristiana Tanase
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- ‘Titu Maiorescu’ University, Faculty of Medicine, 004051 Bucharest, Romania
- Correspondence to: Professor Cristiana Tanase, Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 99–101 Splaiul Independentei, 050096 Bucharest, Romania, E-mail:
| | - Ionela Daniela Popescu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050047 Bucharest, Romania
| | - Ancuta Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050047 Bucharest, Romania
- ‘C.I. Parhon’ National Institute of Endocrinology, 011863 Bucharest, Romania
| | - Elena Codrici
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Simona Mihai
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Lucian Albulescu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Laura Necula
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cellular and Molecular, ‘Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania
| | - Radu Albulescu
- Department of Biochemistry-Proteomics, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
- National Institute for Chemical-Pharmaceutical Research and Development, 061323 Bucharest, Romania
| |
Collapse
|
6
|
Temporal expression of cytokines and B-cell phenotypes during mechanical circulatory support. J Thorac Cardiovasc Surg 2019; 159:155-163. [PMID: 31056358 PMCID: PMC7220810 DOI: 10.1016/j.jtcvs.2019.03.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/10/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Allosensitization during mechanical circulatory support (MCS) is a well-described phenomenon, although its mechanism remains unknown. Although immune-mediated interactions from devices or blood transfusions have been proposed, the role of inflammation in this development is less clear. This study was undertaken to further investigate the temporal association of cytokines and B-cell phenotypes in the MCS population. METHODS Adult patients who received the Heartmate II (Thoratec, Pleasanton, Calif) at our center between September 2012 and March 2015 were prospectively followed after device implantation. Blood draws for anti-human leukocyte antigen (HLA) antibody, cytokine expression, and B-cell immunophenotyping were performed before implantation and for 3 weeks postoperatively. Time courses for cytokines and B-cell subsets were expressed using visual representations of median levels as heat maps, and mixed modeling analysis was used to model changes with time and patient factors. RESULTS Twenty patients who received the Heartmate II (Thoratec) were analyzed during the study period. Four patients showed measureable levels of anti-HLA antibody during the follow-up period, although 3 of these had evidence of antibodies preoperatively. Analysis of cytokine trends revealed early (interleukin [IL]-6, IL-8, and IL-10) and late peaking (IL-3, IL-4, fibroblast growth factor 2, and CD40L) patterns. Upregulation of switched memory, transitional, and plasma blast B cells occurred over time. Right ventricular assist device use and low Interagency Registry for Mechanically Assisted Circulatory Support score were associated with decreased mature naive and increased antibody-secreting cells. CONCLUSIONS MCS device implantation was associated with increased inflammatory cytokines and maturation of B-cell phenotypes. No patients developed de novo HLA antibodies, whereas several showed increases in anti-HLA antibody levels detected before implantation. This suggests that inflammation and maturation of existing sensitized B cells might play an important role in the pathogenesis of allosensitization in MCS.
Collapse
|
7
|
Gavalas NG, Liontos M, Trachana SP, Bagratuni T, Arapinis C, Liacos C, Dimopoulos MA, Bamias A. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci 2013; 14:15885-909. [PMID: 23903048 PMCID: PMC3759892 DOI: 10.3390/ijms140815885] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/13/2013] [Accepted: 06/27/2013] [Indexed: 12/29/2022] Open
Abstract
Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in "feeding" cancer. Such molecules include the vascular endothelial growth factor (VEGF), the platelet derived growth factor (PDGF), the fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.
Collapse
Affiliation(s)
- Nikos G. Gavalas
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Sofia-Paraskevi Trachana
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Tina Bagratuni
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Calliope Arapinis
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Christine Liacos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| | - Aristotle Bamias
- Department of Clinical Therapeutics, Medical School, University of Athens, Alexandra Hospital, 80 Vas. Sofias Avenue, Athens 115 28, Greece; E-Mails: (N.G.G.); (L.M.); (S.-P.T.); (T.B.); (C.A.); (C.L.); (M.A.G.)
| |
Collapse
|
8
|
Liu J, Guo W, Xu B, Ran F, Chu M, Fu H, Cui J. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil. Acta Biochim Biophys Sin (Shanghai) 2012; 44:490-502. [PMID: 22551583 DOI: 10.1093/abbs/gms029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers. Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent, which has previously been shown to reduce tumor growth and angiogenesis. In this study, we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs). Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu). Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro. In vivo, PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy, resulting in significantly higher tumor inhibition rates, lower microvessel density values, and prolonged survival times. It was also demonstrated that PAB acted by blocking the cell cycle at both the G(1)/S boundary and M phase, down-regulation of vascular endothelial growth factor, hypoxia-inducible factor 1α and cyclin E expression, and up-regulation of cdc2 expression. These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.
Collapse
Affiliation(s)
- Jingtao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Associations between hepatocyte growth factor, c-Met, and basic fibroblast growth factor and survival in endometrial cancer patients. Br J Cancer 2012; 106:2004-9. [PMID: 22617129 PMCID: PMC3388566 DOI: 10.1038/bjc.2012.200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Hepatocyte growth factor (HGF), c-Met, and basic fibroblast growth factor (bFGF) are molecular markers that contribute to angiogenesis and proliferation in numerous cancers. We assessed the prognostic significance of these factors in tumour and stroma of endometrial cancer (EC) patients (n=211). Methods: Immunohistochemistry (IHC) was used to detect tumour and stromal protein expression of the biomarkers. Associations between expression and clinicopathological factors were assessed using Chi-square tests. Kaplan–Meier curves, log-rank tests, and Cox regression were used to summarise associations between biomarker expression and overall survival (OS) and recurrence-free survival (RFS). Results: Tumour bFGF was significantly associated with high-grade endometrioid and clear cell histology (P<0.001), advanced stage (P=0.008), positive lymph-node involvement (P=0.002), poor OS (log-rank test, P=0.009), and poor RFS (P<0.001). In multivariable analyses, cases with HGF-positive, stromal bFGF-positive tumours had a lower risk of death compared with cases with HGF-positive, stromal bFGF-negative tumours (hazard ratio (HR): 0.14, 95% CI: 0.03, 0.60). Cases with HGF-positive, bFGF-positive tumours had a higher risk of recurrence compared with cases with negative expression of both markers (HR: 9.88, 95% CI: 2.63, 37.16). Conclusion: These IHC data show that tumour and stromal bFGF expression have opposite associations with survival outcomes in EC patients. If confirmed in larger studies, tumour-derived bFGF could be an attractive target in EC therapy.
Collapse
|
10
|
|
11
|
t(11;18)(q21;q21) translocation as predictive marker for non-responsiveness to salvage thalidomide therapy in patients with marginal zone B-cell lymphoma with gastric involvement. Cancer Chemother Pharmacol 2011; 68:1387-95. [PMID: 21465313 DOI: 10.1007/s00280-011-1631-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 03/21/2011] [Indexed: 12/31/2022]
Abstract
PURPOSE Activation of TNF-α/NF-κB-related signaling pathway is crucial in sustain the growth of Helicobacter pylori-independent gastric mucosa-associated lymphoid tissue type (MALT) lymphoma. Thalidomide is an anti-angiogenic agent with anti-TNF-α and anti-NF-κB activity. This retrospective study evaluated the efficacy of thalidomide in standard therapy-failure gastric MALT lymphoma. METHODS Between October 2003 and September 2007, 10 patients with antibiotics-resistant, chemotherapy-refractory gastric MALT lymphoma who received salvage thalidomide therapy at daily doses of 100-200 mg were identified from medical records and included. Status of t(11;18)(q21;q21) was determined by reverse transcriptase polymerase chain reaction for API2-MALT1 transcript, while expression of NF-κB was detected by immunohistochemistry. Tumor response was evaluated by RECIST criteria. RESULTS Tumors were of stage IV in seven and IE/IIE-1 in three. The best tumor response after thalidomide was complete response in two and partial in three, with an overall response rate of 50% (95% confidence interval, 12.3-87.7%). At median follow-up of 39.3 months, the 3-year event-free and overall survival rates were 36.0% and 85.7%, respectively. API2-MALT1 transcript was detected in four (40%) tumors. Objective response rates of tumors with and without t(11;18)(q21;q21) were 0% (0/4) and 83% (5/6), respectively, P = 0.048 (Fisher's exact test). Thalidomide treatment was associated with significant down-regulation of nuclear NF-κB expression levels in residual neoplastic cells and microenvironments of responsive tumors, but not in t(11;18)(q21;q21)-positive, thalidomide-refractory tumors. CONCLUSIONS Thalidomide is an effective salvage treatment for standard therapy-failure, t(11;18)(q21;q21) translocation-negative gastric MALT lymphoma and deserves further exploration.
Collapse
|
12
|
van Krieken JH. New developments in the pathology of malignant lymphoma. A review of the literature published from August 2010–October 2010. J Hematop 2010. [DOI: 10.1007/s12308-010-0078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|