1
|
Schwenger KJP, Ghorbani Y, Bharatselvam S, Chen L, Chomiak KM, Tyler AC, Eddingsaas NC, Fischer SE, Jackson TD, Okrainec A, Allard JP. Links between fecal microplastics and parameters related to metabolic dysfunction-associated steatotic liver disease (MASLD) in humans: An exploratory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176153. [PMID: 39260480 DOI: 10.1016/j.scitotenv.2024.176153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) can persist in the environment and human body. Murine studies showed that exposure to MPs could cause metabolic dysregulation, contributing metabolic dysfunction-associated steatotic liver disease (MASLD) or steatohepatitis (MASH). However, research on the role of MPs in humans is limited. Thus, we aimed to assess links between human fecal MPs and liver histology, gene expression, immune cells and intestinal microbiota (IM). We included 6 lean healthy liver donors and 6 normal liver (obese) and 11 MASH patients. Overall, pre-BSx, we observed no significant differences in fecal MPs between groups. However, fecal MP fibers and total MPs positively correlated with portal and total macrophages and total killer T cells while total fecal MPs were positively correlated with natural killer cells. Additionally, 19 genes related to immune system and apoptosis correlated with fecal MPs at baseline. Fecal MP fibers correlated positively with fecal Bifidobacterium and negatively with Lachnospiraceae. Patients with MASH (n = 11) were re-assessed 12-months post-bariatric surgery (BSx) and we found that those with persistent disease (n = 4) had higher fecal MP fragments than those with normalized liver histology (n = 7). At 12-month post-BSx, MP fragments positively correlated with helper T cells and total MPs positively correlated with natural killer T cells and B cells. Our study is the first to look at 1) the role of MPs in MASH and its association with IM, immune cells and hepatic gene expression and 2) look at the role of MPs longitudinally in MASH persistence following BSx. Future research should further explore this relationship.
Collapse
Affiliation(s)
| | - Yasaman Ghorbani
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Kristina M Chomiak
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Anna Christina Tyler
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Nathan C Eddingsaas
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY, United States of America
| | - Sandra E Fischer
- Toronto General Hospital, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Timothy D Jackson
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Allan Okrainec
- Division of Surgery, University of Toronto, Toronto, Canada; Division of General Surgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Johane P Allard
- Toronto General Hospital, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Medicine, Division of Gastroenterology, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Gadd VL, Melino M, Roy S, Horsfall L, O'Rourke P, Williams MR, Irvine KM, Sweet MJ, Jonsson JR, Clouston AD, Powell EE. Portal, but not lobular, macrophages express matrix metalloproteinase-9: association with the ductular reaction and fibrosis in chronic hepatitis C. Liver Int 2013; 33:569-79. [PMID: 23240894 DOI: 10.1111/liv.12050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/14/2012] [Accepted: 11/06/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Liver macrophages are a heterogeneous cell population that produces factors involved in fibrogenesis and matrix turnover, including matrix metalloproteinase (MMP) -9. During liver injury, their close proximity to hepatic progenitor cells and the ductular reaction may enable them to regulate liver repair and fibrosis. AIMS To enumerate and characterise liver macrophages in patients with chronic hepatitis C, to determine whether a distinct population of macrophages is associated with the ductular reaction and portal fibrosis. METHODS Immunostaining for macrophage markers (CD68, CD163, CCR2), the ductular reaction (keratin-7) and MMP-9 was performed in liver biopsy sections from patients with chronic hepatitis C virus (HCV) (n = 85). RESULTS Portal tracts were more densely populated with macrophages (10.5 ± 0.36 macrophages/HPF) than lobules (7.2 ± 0.16 macrophages/HPF, P < 0.001) and macrophages were found in close proximity to the ductular reaction. ≥30% of portal and periductal macrophages expressed MMP-9 and these were significantly associated with increasing stage of fibrosis (rs = 0.58, 0.68, respectively, both P < 0.001). In contrast, MMP-9(+) macrophages were largely absent in lobular regions and non-diseased liver. Hepatic MMP-9 mRNA levels and gelatinolytic activity were significantly associated with stage of fibrosis (rs = 0.47, rs = 0.89, respectively, both P < 0.001). Furthermore, a second distinct CCR2(+) macrophage population was localised to the centrilobular regions and was predominantly absent from portal and periductal areas. CONCLUSIONS These findings demonstrate significant regional differences in macrophage phenotypes, suggesting that there are at least two populations of liver macrophages. We propose that these populations have distinct contributions to the pathogenesis of chronic HCV-related liver disease.
Collapse
Affiliation(s)
- Victoria L Gadd
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|