1
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
2
|
Mittelheisser V, Coliat P, Moeglin E, Goepp L, Goetz JG, Charbonnière LJ, Pivot X, Detappe A. Optimal Physicochemical Properties of Antibody-Nanoparticle Conjugates for Improved Tumor Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110305. [PMID: 35289003 DOI: 10.1002/adma.202110305] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Tumor-targeted antibody (mAb)/fragment-conjugated nanoparticles (NPs) represent an innovative strategy for improving the local delivery of small molecules. However, the physicochemical properties of full mAb-NPs and fragment-NPs-that is, NP material, size, charge, as well as the targeting antibody moiety, and the linker conjugation strategies-remain to be optimized to achieve an efficient tumor targeting. A meta-analysis of 161 peer-reviewed studies is presented, which describes the use of tumor-targeted mAb-NPs and fragment-NPs from 2009 to 2021. The use of these targeted NPs is confirmed to result in significantly greater tumor uptake of NPs than that of naked NPs (7.9 ± 1.9% ID g-1 versus 3.2 ± 0.6% ID g-1 , respectively). The study further demonstrates that for lipidic NPs, fragment-NPs provide a significantly higher tumor uptake than full mAb-NPs. In parallel, for both polymeric and organic/inorganic NPs, full mAb-NPs yield a significant higher tumor uptake than fragment-NPs. In addition, for both lipidic and polymeric NPs, the tumor uptake is improved with the smallest sizes of the conjugates. Finally, the pharmacokinetics of the conjugates are demonstrated to be driven by the NPs and not by the antibody moieties, independently of using full mAb-NPs or fragment-NPs, confirming the importance of optimizing the NP design to improve the tumor uptake.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
- INSERM UMR_S1109, Strasbourg, 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Pierre Coliat
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Eric Moeglin
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Lilian Goepp
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Jacky G Goetz
- INSERM UMR_S1109, Strasbourg, 67000, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, 67000, France
| | - Loic J Charbonnière
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR-7178, Strasbourg, 67200, France
| | - Xavier Pivot
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
| | - Alexandre Detappe
- Institut de Cancérologie Strasbourg-Europe, Strasbourg, 67000, France
- Institut Pluridisciplinaire Hubert Curien, CNRS UMR-7178, Strasbourg, 67200, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, 67000, France
| |
Collapse
|