1
|
Sharma R, Mishra A, Bhardwaj M, Singh G, Indira Harahap LV, Vanjani S, Pan CH, Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem 2025; 40:2489720. [PMID: 40256842 PMCID: PMC12013171 DOI: 10.1080/14756366.2025.2489720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025] Open
Abstract
This review discusses the critical roles of Ataxia Telangiectasia Mutated Kinase (ATM), ATM and Rad3-related Kinase (ATR), and DNA-dependent protein kinase (DNA-PK) in the DNA damage response (DDR) and their implications in cancer. Emphasis is placed on the intricate interplay between these kinases, highlighting their collaborative and distinct roles in maintaining genomic integrity and promoting tumour development under dysregulated conditions. Furthermore, the review covers ongoing clinical trials, patent literature, and medicinal chemistry campaigns on ATM/ATR/DNA-PK inhibitors as antitumor agents. Notably, the medicinal chemistry campaigns employed robust drug design strategies and aimed at assembling new structural templates with amplified DDR kinase inhibitory ability, as well as outwitting the pharmacokinetic liabilities of the existing DDR kinase inhibitors. Given the success attained through such endeavours, the clinical pipeline of DNA repair kinase inhibitors is anticipated to be supplemented by a reasonable number of tractable entries (DDR kinase inhibitors) soon.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Monika Bhardwaj
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | | | - Sakshi Vanjani
- Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Chun Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
2
|
Deppas JJ, Kiesel BF, Guo J, Rigatti LH, Latoche JD, Green A, Knizner P, Clump DA, Pandya P, Vendetti FP, Bakkenist CJ, Beumer JH. Comparative in vivo toxicology of ATR inhibitors ceralasertib, elimusertib, and berzosertib alone and in combination with ionizing radiation. Toxicol Appl Pharmacol 2025; 500:117375. [PMID: 40339611 DOI: 10.1016/j.taap.2025.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Ionizing radiation (IR) induces damage in the form of DNA strand breaks. As an apical initiator of the DNA damage response, Ataxia telangiectasia and Rad3-related (ATR) mitigates DNA damage, limiting therapeutic efficacy. Small molecule ATR inhibitors (ATRi) restrict this effect and sensitize cancer cells to radiation-induced damage. However, the impact of ATR inhibition in non-malignant tissues following IR is currently unknown. Here, we document the impact of ATRi on murine toxicity profiles following total body irradiation (TBI). Mice were stratified to receive single-dose ATRi (ceralasertib, elimusertib, or berzosertib), 6 Gy TBI, or the combination. Mice were euthanized 48 h post TBI. Blood and tissues were collected for analysis of complete blood counts and histopathology. To further distinguish toxicity profiles, IC50 values were compared between ATRi. Pharmacokinetics (PK) and pharmacodynamics (PD) were considered as potential explanatory factors of differences in toxicity profiles. Elimusertib was determined to be the most potent ATRi, and ceralasertib the least. We observed neutrophilia with all ATRi. We found that ATRi did not exacerbate any TBI-induced toxicities in mice. Berzosertib presented a unique profile among all ATRi across several toxicity endpoints, including modest amelioration of TBI-associated effects on spleen and lymphocyte and white blood cell counts. Cardiotoxicity was observed following single-dose ceralasertib, but no other ATRi, possibly due to high unbound plasma drug concentrations. Our results further support and guide clinical development of ATRi in clinic.
Collapse
Affiliation(s)
- Joshua J Deppas
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brian F Kiesel
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jianxia Guo
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America
| | - Lora H Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph D Latoche
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony Green
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - Paul Knizner
- Pitt Biospecimen Core Research Histology Department, Health Sciences Core Research Facilities, Pittsburgh, PA, USA
| | - D Andy Clump
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pinakin Pandya
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank P Vendetti
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher J Bakkenist
- Department of Radiation Oncology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jan H Beumer
- Cancer Therapeutics Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States of America; Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
3
|
Cheng B, Ding Z, Hong Y, Wang Y, Zhou Y, Chen J, Peng X, Zeng C. Research progress in DNA damage response (DDR)-targeting modulators: From hits to clinical candidates. Eur J Med Chem 2025; 287:117347. [PMID: 39908794 DOI: 10.1016/j.ejmech.2025.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
In recent years, synthetic lethality has been regarded as a sound example of cancer treatment. Identifying a growing number of synthetic lethality targets has led to a substantial broadening of the application of synthetic lethality, well beyond the PAPR inhibitors employed for treating tumors with BRCA1/2 deficiencies. Especially, molecular targets within the DDR have furnished inhibitor sources and have rapidly advanced to clinical trials. In this review, we summarize the DDR-associated synthetic lethality targets such as WRN, USP1, PARP, ATR, DNA-PK, PRMT5, POLQ, and WEE1. These targets allow for the development of targeted modulators like inhibitors and degraders. Additionally, we emphasize the rational design, advantages, and potential limitations. Furthermore, we outline the promising future of DDR-targeted drug development.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Zongbao Ding
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yimeng Hong
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yaping Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yingxing Zhou
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Chunlai Zeng
- Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
4
|
Fauvre A, Ursino C, Garambois V, Culerier E, Milazzo LA, Vezzio-Vié N, Jeanson L, Marchive C, Andrade AF, Combes E, Atis S, Lossaint G, Quenet F, Michaud HA, Khellaf L, Corbeau I, Tosi D, Houede N, Bonnefoy N, Sgarbura O, Gongora C, Faget J. Oxaliplatin, ATR inhibitor and anti-PD-1 antibody combination therapy controls colon carcinoma growth, induces local and systemic changes in the immune compartment, and protects against tumor rechallenge in mice. J Immunother Cancer 2025; 13:e010791. [PMID: 40139833 PMCID: PMC11950992 DOI: 10.1136/jitc-2024-010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/01/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer type and one of the leading causes of cancer-related death worldwide. The treatment of advanced metastatic CRC relies on classical chemotherapy combinations (5-fluorouracil, oxaliplatin or irinotecan). However, their use is limited by the emergence of resistance mechanisms, including to oxaliplatin. In this context, we recently showed that the combination of oxaliplatin and ataxia telangiectasia and Rad3-related protein inhibition (VE-822) is synergistic and may have a potential therapeutic effect in metastatic CRC management. METHODS In this study, we investigated the role of the VE-822+oxaliplatin (Vox) combination on the immune response and its potential synergy with an anti-programmed-cell Death receptor-1 (PD-1) antibody. We used cell lines and organoids from metastatic CRC to investigate in vitro Vox efficacy and orthotopic syngeneic mouse models of metastatic CRC to assess the efficacy of Vox+anti-PD-1 antibody and identify the involved immune cells. RESULTS The Vox+anti-PD-1 antibody combination completely cured tumor-bearing mice and protected them from a rechallenge. Vox was associated with a reduction of tumor-infiltrated neutrophils, CD206+ macrophages and regulatory T cells. Vox also induced a deep depletion of blood neutrophils. The increased bone marrow granulopoiesis failed to compensate for the Vox-mediated mature neutrophil depletion. Neutrophil depletion using a mouse recombinant anti-Ly6G antibody partially mimicked the Vox effect on the tumor microenvironment, but to a lower extent compared with the Vox+anti-PD-1 antibody combination. Vox, but not neutrophil depletion, led to the emergence of an Ly6C+ PD-1+ CD8+ T-cell population in the blood and spleen of tumor-harboring mice. These cells were proliferating, and expressed IFN-γ, CD62L, CXCR3 and Eomes. Moreover, the proportion of tumor antigen-specific T cells and of CD122+ BCL6+ T cells, which shared phenotypic characteristics with stem-like CD8+ T cells, was increased in treated mice. CONCLUSIONS Our work strongly suggests that the Vox+anti-PD-1 antibody combination might significantly improve survival in patients with metastatic and treatment-refractory CRC by acting both on cancer cells and CD8+ T cells.
Collapse
Affiliation(s)
- Alexandra Fauvre
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Chiara Ursino
- Immunity and Cancer Team, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Veronique Garambois
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Elodie Culerier
- Immunity and Cancer Team, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Louis-Antoine Milazzo
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Nadia Vezzio-Vié
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Laura Jeanson
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Candice Marchive
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Augusto Faria Andrade
- McGill University/Research Institute of McGill University, Nada Jabado Lab, Montreal, Quebec, Canada
| | - Eve Combes
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Salima Atis
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Gérald Lossaint
- Institut regional du Cancer de Montpellier, Montpellier, France
| | - François Quenet
- Institut regional du Cancer de Montpellier, Montpellier, France
| | - Henri-Alexandre Michaud
- Immunity and Cancer Team, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Lakhdar Khellaf
- Department of Pathology, Montpellier University, Montpellier, France
| | - Ileana Corbeau
- Institut regional du Cancer de Montpellier, Montpellier, France
| | - Diego Tosi
- Medical Oncology Department, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nadine Houede
- Department of Oncology, University Hospital of Nimes, Nîmes, France
| | - Nathalie Bonnefoy
- Immunity and Cancer Team, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Olivia Sgarbura
- Institut regional du Cancer de Montpellier, Montpellier, France
| | - Céline Gongora
- Résistance aux traitements et thérapies innovantes, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), CNRS, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
- CNRS, Paris, France
| | - Julien Faget
- Immunity and Cancer Team, Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier (UM), Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| |
Collapse
|
5
|
Jiang Y, Bei W, Wang L, Lu N, Xu C, Liang H, Ke L, Ye Y, He S, Dong S, Liu Q, Zhang C, Wang X, Xia W, Zhao C, Huang Y, Xiang Y, Liu G. Efficacy and safety of cadonilimab (PD-1/CTLA-4 bispecific) in combination with chemotherapy in anti-PD-1-resistant recurrent or metastatic nasopharyngeal carcinoma: a single-arm, open-label, phase 2 trial. BMC Med 2025; 23:152. [PMID: 40069710 PMCID: PMC11899053 DOI: 10.1186/s12916-025-03985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND We aimed to evaluate the efficacy and safety of cadonilimab (anti-PD-1 and CTLA-4 bispecific antibody) plus TPC chemotherapy (NAB-paclitaxel, cisplatin or lobaplatin, and capecitabine) in patients with recurrent or metastatic nasopharyngeal carcinoma (RM-NPC) who failed to PD-1 inhibitor-containing regimens. METHODS In this single-arm, open-label, phase 2 study, RM-NPC patients who failed to at least one line of systemic chemotherapy and anti-PD-1 immunotherapy were enrolled and received cadonilimab plus TPC chemotherapy every 3 weeks for up to 6 cycles, followed by cadonilimab plus capecitabine every 3 weeks for a maximum of 2 years. The primary endpoint was the objective response rate (ORR). The secondary endpoints included progression-free survival (PFS), overall survival (OS), duration of response (DoR), and safety. RESULTS Twenty-five patients were enrolled (84% male; median age 44 years (range, 24-60)), with a median follow-up of 10.2 months. The ORR was 68%, with 3 complete responses, 14 partial responses, and 6 stable diseases. The median DoR was 9.1 months (95% CI, 3.8-14.5 months). The median PFS was 10.6 months (95% CI, 5.2-16.0 months). The 12-month OS was 75.6%. Treatment was well tolerated. Grade 3 or 4 treatment-related adverse events occurred in 12 (48%) patients. Fourteen patients (56%) experienced potentially immune-related adverse events (irAEs). One patient experienced a grade 3 immune-related rash and another patient had grade 3 immune-related lipase increased. No treatment-related death occurred. CONCLUSIONS Cadonilimab in combination with TPC chemotherapy demonstrated promising antitumoral efficacy and manageable toxicities in patients with RM-NPC who failed frontline immunotherapy. Further trials are warranted to confirm and expand these findings. TRIAL REGISTRATION This trial was registered at chictr.org.cn (ChiCTR2200067057).
Collapse
Affiliation(s)
- Yaofei Jiang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, NanChang, China
| | - Weixin Bei
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lin Wang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Nian Lu
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cheng Xu
- Department of Radiotherapy, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hu Liang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangru Ke
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanfang Ye
- Clinical Research Design Division, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuiqing He
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shuhui Dong
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qin Liu
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chuanrun Zhang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xuguang Wang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weixiong Xia
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chong Zhao
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Huang
- Department of Radiotherapy, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Guoying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Tang XM, Shi MM, Wang JC, Gu YJ, Dai YT, Yang QX, Liu J, Ren LJ, Liu XY, Yang C, Ma FF, Liu JB, Yu H, Fu D, Wang YF. TOPBP1 as a potential predictive biomarker for enhanced combinatorial efficacy of olaparib and AZD6738 in PDAC. Cell Biosci 2025; 15:17. [PMID: 39920847 PMCID: PMC11806807 DOI: 10.1186/s13578-025-01350-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and often lethal malignancy, requiring the development of enhanced therapeutic approaches. The DNA damage response (DDR) pathway is frequently altered during PDAC development, leading to an increased occurrence of DNA damage. DNA topoisomerase II-binding protein 1 (TOPBP1) plays a supportive role in regulating the DDR pathway, and its overexpression has been linked to the tumorigenesis of various cancers. This study investigated the biological role of TOPBP1 in PDAC pathogenesis and evaluated its clinical relevance in guiding treatment regimens. We examined the relationship between TOPBP1 expression, DDR pathway modulation, and therapeutic response in PDAC cell lines, primary cells, and subcutaneous mouse models. We found that elevated TOPBP1 expression was positively correlated with increased histologic grade and reduced patient survival in PDAC. TOPBP1 knockdown increased the sensitivity of PDAC cells to olaparib treatment and improved therapeutic efficacy in both PDAC cell lines and subcutaneous mouse models. Combination treatment with olaparib and AZD6738 effectively induced P53-dependent apoptosis via inhibiting the ATR pathway and enhancing signaling through the ATM pathway, which significantly reduced the viability of pancreatic cell lines. Notably, this combination therapy was more effective in PDAC cell lines exhibiting high TOPBP1 expression, indicating that TOPBP1 may serve as a useful predictive biomarker. In conclusion, TOPBP1 is a potential marker for optimizing the olaparib and AZD6738 combination therapy in PDAC. This study highlights the clinical significance of TOPBP1 in the treatment of PDAC and emphasizes the potential implications for a broader population of patients.
Collapse
Affiliation(s)
- Xiao-Mei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Min-Min Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jia-Cheng Wang
- Shanghai Pinghe School, Shanghai, 200127, China
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Yi-Jin Gu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Ting Dai
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qin-Xin Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ling-Jie Ren
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Chun Yang
- Department of Anesthesiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Fang-Fang Ma
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Ji-Bing Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou Peoples Hospital of Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
- Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, Jiangsu, China.
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| | - Yun-Feng Wang
- Department of General Surgery, Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
8
|
Kawai-Kawachi A, Lenormand MM, Astier C, Herbel N, Cutrona MB, Ngo C, Garrido M, Eychenne T, Dorvault N, Bordelet L, Song F, Bouyakoub R, Loktev A, Romo-Morales A, Henon C, Colmet-Daage L, Vibert J, Drac M, Brough R, Schwob E, Martella O, Pinna G, Shipley JM, Mittnacht S, Zimmermann A, Gulati A, Mir O, Le Cesne A, Faron M, Honoré C, Lord CJ, Chabanon RM, Postel-Vinay S. Replication Stress Is an Actionable Genetic Vulnerability in Desmoplastic Small Round Cell Tumors. Cancer Res 2025; 85:154-170. [PMID: 39412947 DOI: 10.1158/0008-5472.can-23-3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive sarcoma subtype that is driven by the EWS-WT1 chimeric transcription factor. The prognosis for DSRCT is poor, and major advances in treating DSRCT have not occurred for over two decades. To identify effective therapeutic approaches to target DSRCT, we conducted a high-throughput drug sensitivity screen in a DSRCT cell line assessing chemosensitivity profiles for 79 small-molecule inhibitors. DSRCT cells were sensitive to PARP inhibitors (PARPi) and ataxia-telangiectasia and Rad3-related inhibitors (ATRi), as monotherapies and in combination. These effects were recapitulated using multiple clinical PARPi and ATRi in three biologically distinct, clinically relevant models of DSRCT, including cell lines, a patient-derived xenograft-derived organoid model, and a cell line-derived xenograft mouse model. Mechanistically, exposure to a combination of PARPi and ATRi caused increased DNA damage, G2-M checkpoint activation, micronuclei accumulation, replication stress, and R-loop formation. EWS-WT1 silencing abrogated these phenotypes and was epistatic with exogenous expression of the R-loop resolution enzyme RNase H1 in reversing sensitivity to PARPi and ATRi monotherapies. The combination of PARPi and ATRi also induced EWS-WT1-dependent cell-autonomous activation of the cyclic GMP-AMP synthase-stimulator of IFN genes innate immune pathway and cell-surface expression of PD-L1. Taken together, these findings point toward a role for EWS-WT1 in generating R-loop-dependent replication stress that leads to a targetable vulnerability, providing a rationale for the clinical assessment of PARPi and ATRi in DSRCT. Significance: EWS-WT1, the unique oncogenic driver of desmoplastic small round cell tumors, confers sensitivity to PARP and ATR inhibitors, supporting the potential of these drugs in treating patients with this aggressive sarcoma subtype.
Collapse
Affiliation(s)
- Asuka Kawai-Kawachi
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Madison M Lenormand
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Department of Genomes and Genetics, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Clémence Astier
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Noé Herbel
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- Viroxis SAS Biotech, Gustave Roussy, Villejuif, France
| | | | - Carine Ngo
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Thomas Eychenne
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Nicolas Dorvault
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Laetitia Bordelet
- Experimental and Translational Pathology (PETRA) Platform, AMMICa Unit (CNRS Unit UMS 3655, Inserm Unit US 23), Gustave Roussy, Villejuif, France
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ryme Bouyakoub
- Organoid Core Facility, Gustave Roussy, Villejuif, France
| | - Anastasia Loktev
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Henon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | | | - Guillaume Pinna
- RNA Interference Platform PARi, IRCM/IBFJ/CEA UMRE008, Fontenay-aux-Roses, France
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Astrid Zimmermann
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Olivier Mir
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | | | | | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Roman M Chabanon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sophie Postel-Vinay
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
9
|
Drew Y, Zenke FT, Curtin NJ. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat Rev Drug Discov 2025; 24:19-39. [PMID: 39533099 DOI: 10.1038/s41573-024-01060-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed.
Collapse
Affiliation(s)
- Yvette Drew
- BC Cancer Vancouver Centre and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank T Zenke
- Research Unit Oncology, EMD Serono, Billerica, MA, USA
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
10
|
Gang X, Yan J, Li X, Shi S, Xu L, Liu R, Cai L, Li H, Zhao M. Immune checkpoint inhibitors rechallenge in non-small cell lung cancer: Current evidence and future directions. Cancer Lett 2024; 604:217241. [PMID: 39260670 DOI: 10.1016/j.canlet.2024.217241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Immunotherapy, remarkably immune checkpoint inhibitors (ICIs), has significantly altered the treatment landscape for non-small cell lung cancer (NSCLC). Despite their success, the discontinuation of ICIs therapy may occur due to factors such as prior treatment completion, disease progression during ICIs treatment, or immune-related adverse events (irAEs). As numerous studies highlight the dynamic nature of immune responses and the sustained benefits of ICIs, ICIs rechallenge has become an attractive and feasible option. However, the decision-making process for ICIs rechallenge in clinical settings is complicated by numerous uncertainties. This review systematically analyses existing clinical research evidence, classifying ICIs rechallenge into distinct clinical scenarios, exploring methods to overcome ICIs resistance in rechallenge instances, and identifying biomarkers to select patients likely to benefit from rechallenge. By integrating recent studies and new technologies, we offer crucial recommendations for future clinical trial design and provide a practical guideline to maximize the therapeutic benefits of immunotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Xiaoyu Gang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jinshan Yan
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xin Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ruotong Liu
- Clinical Medicine, Shenyang Medical College, Shenyang, 110001, China
| | - Lutong Cai
- Psychological Medicine, Shenyang Medical College, Shenyang, 110001, China
| | - Heming Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China; Guangdong Association of Clinical Trials (GACT)/Chinese Thoracic Oncology Group (CTONG) and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, 510000, China.
| | - Mingfang Zhao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
11
|
Federica G, Michela C, Giovanna D. Targeting the DNA damage response in cancer. MedComm (Beijing) 2024; 5:e788. [PMID: 39492835 PMCID: PMC11527828 DOI: 10.1002/mco2.788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Guffanti Federica
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Chiappa Michela
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Damia Giovanna
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
12
|
Taniguchi H, Chakraborty S, Takahashi N, Banerjee A, Caeser R, Zhan YA, Tischfield SE, Chow A, Nguyen EM, Villalonga ÁQ, Manoj P, Shah NS, Rosario S, Hayatt O, Qu R, de Stanchina E, Chan J, Mukae H, Thomas A, Rudin CM, Sen T. ATR inhibition activates cancer cell cGAS/STING-interferon signaling and promotes antitumor immunity in small-cell lung cancer. SCIENCE ADVANCES 2024; 10:eado4618. [PMID: 39331709 PMCID: PMC11430494 DOI: 10.1126/sciadv.ado4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 08/23/2024] [Indexed: 09/29/2024]
Abstract
Patients with small-cell lung cancer (SCLC) have poor prognosis and typically experience only transient benefits from combined immune checkpoint blockade (ICB) and chemotherapy. Here, we show that inhibition of ataxia telangiectasia and rad3 related (ATR), the primary replication stress response activator, induces DNA damage-mediated micronuclei formation in SCLC models. ATR inhibition in SCLC activates the stimulator of interferon genes (STING)-mediated interferon signaling, recruits T cells, and augments the antitumor immune response of programmed death-ligand 1 (PD-L1) blockade in mouse models. We demonstrate that combined ATR and PD-L1 inhibition causes improved antitumor response than PD-L1 alone as the second-line treatment in SCLC. This study shows that targeting ATR up-regulates major histocompatibility class I expression in preclinical models and SCLC clinical samples collected from a first-in-class clinical trial of ATR inhibitor, berzosertib, with topotecan in patients with relapsed SCLC. Targeting ATR represents a transformative vulnerability of SCLC and is a complementary strategy to induce STING-interferon signaling-mediated immunogenicity in SCLC.
Collapse
Affiliation(s)
- Hirokazu Taniguchi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Avisek Banerjee
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rebecca Caeser
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yingqian A. Zhan
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sam E. Tischfield
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Evelyn M. Nguyen
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Álvaro Quintanal Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai S. Shah
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Rosario
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Hayatt
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Qu
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Chan
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Charles M. Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
13
|
Li W, Gu J, Fan H, Zhang L, Guo J, Si L. Evolving cancer resistance to anti-PD-1/PD-L1 antibodies in melanoma: Comprehensive insights with future prospects. Crit Rev Oncol Hematol 2024; 201:104426. [PMID: 38908767 DOI: 10.1016/j.critrevonc.2024.104426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Immunotherapy has transformed the treatment of advanced melanoma. However, up to two-thirds of patients experience disease progression after initially achieving a response to immunotherapy. Furthermore, most research has focused on cutaneous melanoma rather than acral or mucosal melanoma, although the latter predominates in Asian populations. In this review, we examine and summarize current definitions of resistance to immunotherapy and the epidemiology of resistance to PD-1 inhibition. We also review the available literature on molecular mechanisms of resistance, including how the tumor mutational landscape and tumor microenvironments of immunotherapy-resistant acral and mucosal melanomas may influence resistance. Finally, we review strategies for overcoming resistance to PD-1 inhibition and summarize completed studies and ongoing clinical trials. Our review highlights that improving the understanding of resistance mechanisms, optimizing existing therapies and further studying high-risk populations would maximize the potential of immunotherapy and result in optimized treatment outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Wenyu Li
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Junjie Gu
- Department of Urological Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongwei Fan
- Value & Implementation, Global Medical & Scientific Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Li Zhang
- Value & Implementation, Global Medical & Scientific Affairs, Merck Sharp & Dohme (MSD) China, Shanghai, China
| | - Jun Guo
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China; Department of Urological Oncology, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Lu Si
- Department of Melanoma and Sarcoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
14
|
Zhao B, Zhang M, Tang J, Zou D, Liu F, Shi Q, Gao T, Li C, Zhu G. Efficacy and safety of PD-1 monoclonal antibody combined with interferon-alpha 1b and anlotinib hydrochloride as the second-line therapy in patients with unresectable advanced melanoma: A retrospective study. Cancer Med 2024; 13:e70087. [PMID: 39166495 PMCID: PMC11337113 DOI: 10.1002/cam4.70087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immune-checkpoint inhibitors are now used more commonly in combination than monotherapy as the first-line choice in patients with unresectable advanced melanoma. Nevertheless, for cases that progressed after the initial combination therapy, the subsequent regimen option can be very difficult. Herein, we reported the efficacy and safety of a triple combination regimen in Chinese unresectable advanced melanoma patients who had poor responses to the first-line immune therapy. METHODS We reviewed the clinical profiles of patients diagnosed with stage IIIC-IV melanoma between June 1, 2020, and September 30, 2023. The patients who failed the prior immune therapies and received anti-PD-1 mono antibody plus interferon(IFN)-alpha 1b and anlotinib hydrochloride as the second-line therapy were enrolled in the retrospective analysis. Additionally, we examined the exhaustion of T-cells using mIHC staining in available tumor samples. RESULTS Fifty-five patients were included in this study. The median follow-up period was 13.6 months. The objective response rate evaluated by the investigators was 9.1%(1CR, 4PR). The disease control rate was 47.3%. The median overall survival was 17.6 months, and the median progression-free survival was 2.8 months. The adverse events rate of any grade was 100%. Grade 3 or 4 irAEs were observed in 29.1% of cases. Multiplex immunohistochemical staining revealed an increased trend of TIM3 expression on tumor-infiltrating T cells in patients without objective response. CONCLUSION PD-1 monoclonal antibody plus interferon-alpha 1b plus anlotinib showed acceptable tolerability and anticancer benefits in Chinese metastatic melanoma patients as a second-line therapy.
Collapse
Affiliation(s)
- Bolun Zhao
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Mengyu Zhang
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jingyi Tang
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Daopei Zou
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Fang Liu
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Qiong Shi
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Tianwen Gao
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chunying Li
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Guannan Zhu
- Department of Dermatology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
15
|
Jo U, Arakawa Y, Zimmermann A, Taniyama D, Mizunuma M, Jenkins LM, Maity T, Kumar S, Zenke FT, Takebe N, Pommier Y. The Novel ATR Inhibitor M1774 Induces Replication Protein Overexpression and Broad Synergy with DNA-targeted Anticancer Drugs. Mol Cancer Ther 2024; 23:911-923. [PMID: 38466804 PMCID: PMC11555614 DOI: 10.1158/1535-7163.mct-23-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/09/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase inhibitors are in clinical trials. Here we explored the molecular pharmacology and therapeutic combination strategies of the oral ATR inhibitor M1774 (Tuvusertib) with DNA-damaging agents (DDA). As single agent, M1774 suppressed cancer cell viability at nanomolar concentrations, showing greater activity than ceralasertib and berzosertib, but less potency than gartisertib and elimusertib in the small cell lung cancer H146, H82, and DMS114 cell lines. M1774 also efficiently blocked the activation of the ATR-CHK1 checkpoint pathway caused by replication stress induced by TOP1 inhibitors. Combination with non-toxic dose of M1774 enhanced TOP1 inhibitor-induced cancer cell death by enabling unscheduled replication upon replicative damage, thereby increasing genome instability. Tandem mass tag-based quantitative proteomics uncovered that M1774, in the presence of DDA, forces the expression of proteins activating replication (CDC45) and G2-M progression (PLK1 and CCNB1). In particular, the fork protection complex proteins (TIMELESS and TIPIN) were enriched. Low dose of M1774 was found highly synergistic with a broad spectrum of clinical DDAs including TOP1 inhibitors (SN-38/irinotecan, topotecan, exatecan, and exatecan), the TOP2 inhibitor etoposide, cisplatin, the RNA polymerase II inhibitor lurbinectedin, and the PARP inhibitor talazoparib in various models including cancer cell lines, patient-derived organoids, and mouse xenograft models. Furthermore, we demonstrate that M1774 reverses chemoresistance to anticancer DDAs in cancer cells lacking SLFN11 expression, suggesting that SLFN11 can be utilized for patient selection in upcoming clinical trials.
Collapse
Affiliation(s)
- Ukhyun Jo
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Daiki Taniyama
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Makito Mizunuma
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tapan Maity
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Naoko Takebe
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
16
|
Gu L, Liu M, Zhang Y, Zhou H, Wang Y, Xu ZX. Telomere-related DNA damage response pathways in cancer therapy: prospective targets. Front Pharmacol 2024; 15:1379166. [PMID: 38910895 PMCID: PMC11190371 DOI: 10.3389/fphar.2024.1379166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Maintaining the structural integrity of genomic chromosomal DNA is an essential role of cellular life and requires two important biological mechanisms: the DNA damage response (DDR) mechanism and telomere protection mechanism at chromosome ends. Because abnormalities in telomeres and cellular DDR regulation are strongly associated with human aging and cancer, there is a reciprocal regulation of telomeres and cellular DDR. Moreover, several drug treatments for DDR are currently available. This paper reviews the progress in research on the interaction between telomeres and cellular DNA damage repair pathways. The research on the crosstalk between telomere damage and DDR is important for improving the efficacy of tumor treatment. However, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Wang R, Chen Y, Xie Y, Ma X, Liu Y. Deciphering and overcoming Anti-PD-1 resistance in Melanoma: A comprehensive review of Mechanisms, biomarker Developments, and therapeutic strategies. Int Immunopharmacol 2024; 132:111989. [PMID: 38583243 DOI: 10.1016/j.intimp.2024.111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
Worldwide, tens of thousands of people die from melanoma each year, making it the most frequently fatal form of cutaneous cancer. Immunotherapeutic advancements, particularly with anti-PD-1 medications, have significantly enhanced treatment outcomes over recent decades. With the broad application of anti-PD-1 therapies, insights into the mechanisms of resistance have evolved. Despite the development of combination treatments and early predictive biomarkers, a comprehensive synthesis of these advancements is absent in the current literature. This review underscores the prevailing knowledge of anti-PD-1 resistance mechanisms and underscores the critical role of robust predictive biomarkers in stratifying patients for targeted combinations of anti-PD-1 and other conventional or innovative therapeutic approaches. Additionally, we offer insights that may shape future melanoma treatment strategies.
Collapse
Affiliation(s)
- Ruoqi Wang
- Shanghai Skin Disease Hospital, Shanghai Clinical College of Dermatology, Fifth Clinical Medical College, Anhui Medical University, Shanghai 200443, China
| | - Yanbin Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Shanghai Clinical College of Dermatology, Fifth Clinical Medical College, Anhui Medical University, Shanghai 200443, China; Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai 200443, China.
| |
Collapse
|
18
|
Chen XY, Wu ZX, Wang JQ, Teng QX, Tang H, Liu Q, Chen ZS, Chen W. Multidrug resistance transporters P-gp and BCRP limit the efficacy of ATR inhibitor ceralasertib in cancer cells. Front Pharmacol 2024; 15:1400699. [PMID: 38756373 PMCID: PMC11096521 DOI: 10.3389/fphar.2024.1400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
The therapeutic effect of chemotherapy and targeted therapy are known to be limited by drug resistance. Substantial evidence has shown that ATP-binding cassette (ABC) transporters P-gp and BCRP are significant contributors to multidrug resistance (MDR) in cancer cells. In this study, we demonstrated that a clinical-staged ATR inhibitor ceralasertib is susceptible to P-gp and BCRP-mediated MDR. The drug resistant cancer cells were less sensitive to ceralasertib compared to the parental cells. Moreover, ceralasertib resistance can be reversed by inhibiting the drug efflux activity of P-gp and BCRP. Interestingly, ceralasertib was able to downregulate the level of P-gp but not BCRP, suggesting a potential regulation between ATR signaling and P-gp expression. Furthermore, computational docking analysis predicted high affinities between ceralasertib and the drug-binding sites of P-gp and BCRP. In summary, overexpression of P-gp and BCRP are sufficient to confer cancer cells resistance to ceralasertib, underscoring their role as biomarkers for therapeutic efficacy.
Collapse
Affiliation(s)
- Xuan-Yu Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| | - Qiu-Xu Teng
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qianwen Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Wenkuan Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
19
|
Zhang ZJ, Zhou Y, Tong H, Sun XC, Lv ZC, Yong JK, Wu YC, Xiang XL, Ding F, Zuo XL, Li F, Xia Q, Feng H, Fan CH. Programmable DNA Hydrogel Assisting Microcrystal Formulations for Sustained Locoregional Drug Delivery in Surgical Residual Tumor Lesions and Lymph Node Metastasis. Adv Healthc Mater 2024; 13:e2303762. [PMID: 38047767 DOI: 10.1002/adhm.202303762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 12/05/2023]
Abstract
Surgical residual tumor lesions (R1 resection of surgical procedures (e.g., liver cancer infiltrating the diaphragm, surgical residual breast cancer, postoperative residual ovarian cancer) or boundary residual after ablation) and lymph node metastasis that cannot be surgically resected (retroperitoneal lymph nodes) significantly affect postoperative survival of tumor patients. This clinical conundrum poses three challenges for local drug delivery systems: stable and continuous delivery, good biocompatibility, and the ability to package new targeted drugs that can synergize with other treatments. Here, a drug-laden hydrogel generated from pure DNA strands and highly programmable in adjusting its mesh size is reported. Meanwhile, the DNA hydrogel can assist the microcrystallization of novel radiosensitizing drugs, ataxia telangiectasia and rad3-related protein (ATR) inhibitor (Elimusertib), further facilitating its long-term release. When applied to the tumor site, the hydrogel system demonstrates significant antitumor activity, minimized systemic toxicity, and has a modulatory effect on the tumor-immune cell interface. This drug-loaded DNA-hydrogel platform represents a novel modality for adjuvant therapy in patients with surgical residual tumor lesions and lymph node metastasis.
Collapse
Affiliation(s)
- Zi-Jie Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Yi Zhou
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Huan Tong
- Shanghai First Maternity and Infant Hospital, Shanghai, 200127, China
| | - Xi-Cheng Sun
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Zi-Cheng Lv
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - June-Kong Yong
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Yi-Chi Wu
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xue-Lin Xiang
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Fei Ding
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| | - Xiao-Lei Zuo
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Li
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Hao Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Institute of Transplantation, Shanghai, 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai, 200127, China
| | - Chun-Hai Fan
- Shanghai Institute of Transplantation, Shanghai, 200127, China
| |
Collapse
|
20
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Besse B, Pons-Tostivint E, Park K, Hartl S, Forde PM, Hochmair MJ, Awad MM, Thomas M, Goss G, Wheatley-Price P, Shepherd FA, Florescu M, Cheema P, Chu QSC, Kim SW, Morgensztern D, Johnson ML, Cousin S, Kim DW, Moskovitz MT, Vicente D, Aronson B, Hobson R, Ambrose HJ, Khosla S, Reddy A, Russell DL, Keddar MR, Conway JP, Barrett JC, Dean E, Kumar R, Dressman M, Jewsbury PJ, Iyer S, Barry ST, Cosaert J, Heymach JV. Biomarker-directed targeted therapy plus durvalumab in advanced non-small-cell lung cancer: a phase 2 umbrella trial. Nat Med 2024; 30:716-729. [PMID: 38351187 PMCID: PMC10957481 DOI: 10.1038/s41591-024-02808-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 03/23/2024]
Abstract
For patients with non-small-cell lung cancer (NSCLC) tumors without currently targetable molecular alterations, standard-of-care treatment is immunotherapy with anti-PD-(L)1 checkpoint inhibitors, alone or with platinum-doublet therapy. However, not all patients derive durable benefit and resistance to immune checkpoint blockade is common. Understanding mechanisms of resistance-which can include defects in DNA damage response and repair pathways, alterations or functional mutations in STK11/LKB1, alterations in antigen-presentation pathways, and immunosuppressive cellular subsets within the tumor microenvironment-and developing effective therapies to overcome them, remains an unmet need. Here the phase 2 umbrella HUDSON study evaluated rational combination regimens for advanced NSCLC following failure of anti-PD-(L)1-containing immunotherapy and platinum-doublet therapy. A total of 268 patients received durvalumab (anti-PD-L1 monoclonal antibody)-ceralasertib (ATR kinase inhibitor), durvalumab-olaparib (PARP inhibitor), durvalumab-danvatirsen (STAT3 antisense oligonucleotide) or durvalumab-oleclumab (anti-CD73 monoclonal antibody). Greatest clinical benefit was observed with durvalumab-ceralasertib; objective response rate (primary outcome) was 13.9% (11/79) versus 2.6% (5/189) with other regimens, pooled, median progression-free survival (secondary outcome) was 5.8 (80% confidence interval 4.6-7.4) versus 2.7 (1.8-2.8) months, and median overall survival (secondary outcome) was 17.4 (14.1-20.3) versus 9.4 (7.5-10.6) months. Benefit with durvalumab-ceralasertib was consistent across known immunotherapy-refractory subgroups. In ATM-altered patients hypothesized to harbor vulnerability to ATR inhibition, objective response rate was 26.1% (6/23) and median progression-free survival/median overall survival were 8.4/22.8 months. Durvalumab-ceralasertib safety/tolerability profile was manageable. Biomarker analyses suggested that anti-PD-L1/ATR inhibition induced immune changes that reinvigorated antitumor immunity. Durvalumab-ceralasertib is under further investigation in immunotherapy-refractory NSCLC.ClinicalTrials.gov identifier: NCT03334617.
Collapse
Affiliation(s)
- Benjamin Besse
- Institut Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Elvire Pons-Tostivint
- Medical Oncology, Centre Hospitalier Universitaire Nantes, Nantes University, Nantes, France
| | - Keunchil Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- MD Anderson Cancer Center, Houston, TX, USA
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Clinic Penzing, Vienna, Austria
- Sigmund Freud University, Vienna, Austria
| | - Patrick M Forde
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maximilian J Hochmair
- Department of Respiratory and Critical Care Medicine, Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Mark M Awad
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Glenwood Goss
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul Wheatley-Price
- The Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Frances A Shepherd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marie Florescu
- Division of Hematology Oncology, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Parneet Cheema
- William Osler Health System, University of Toronto, Toronto, Ontario, Canada
| | | | - Sang-We Kim
- Department of Oncology, Asan Medical Center, Seoul, Republic of Korea
| | - Daniel Morgensztern
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa L Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
| | - Sophie Cousin
- Department of Medical Oncology, Institut Bergonié, Regional Comprehensive Cancer Center, Bordeaux, France
| | - Dong-Wan Kim
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Mor T Moskovitz
- Institute of Oncology, Rambam Medical Center, Haifa, Israel
- Thoracic Cancer Service, Rabin Medical Center Davidoff Cancer Centre, Beilinson Campus, Petah Tikva, Israel
| | - David Vicente
- Department of Medical Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Boaz Aronson
- Oncology Early Global Development, AstraZeneca, Gaithersburg, MD, USA
| | | | - Helen J Ambrose
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sajan Khosla
- Real-World Evidence, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Avinash Reddy
- Oncology Data Science, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Deanna L Russell
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Mohamed Reda Keddar
- Oncology Data Science, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James P Conway
- Oncology Data Science, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - J Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Rakesh Kumar
- Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Sonia Iyer
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | | | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
22
|
Mavroeidi D, Georganta A, Panagiotou E, Syrigos K, Souliotis VL. Targeting ATR Pathway in Solid Tumors: Evidence of Improving Therapeutic Outcomes. Int J Mol Sci 2024; 25:2767. [PMID: 38474014 DOI: 10.3390/ijms25052767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The DNA damage response (DDR) system is a complicated network of signaling pathways that detects and repairs DNA damage or induces apoptosis. Critical regulators of the DDR network include the DNA damage kinases ataxia telangiectasia mutated Rad3-related kinase (ATR) and ataxia-telangiectasia mutated (ATM). The ATR pathway coordinates processes such as replication stress response, stabilization of replication forks, cell cycle arrest, and DNA repair. ATR inhibition disrupts these functions, causing a reduction of DNA repair, accumulation of DNA damage, replication fork collapse, inappropriate mitotic entry, and mitotic catastrophe. Recent data have shown that the inhibition of ATR can lead to synthetic lethality in ATM-deficient malignancies. In addition, ATR inhibition plays a significant role in the activation of the immune system by increasing the tumor mutational burden and neoantigen load as well as by triggering the accumulation of cytosolic DNA and subsequently inducing the cGAS-STING pathway and the type I IFN response. Taken together, we review stimulating data showing that ATR kinase inhibition can alter the DDR network, the immune system, and their interplay and, therefore, potentially provide a novel strategy to improve the efficacy of antitumor therapy, using ATR inhibitors as monotherapy or in combination with genotoxic drugs and/or immunomodulators.
Collapse
Affiliation(s)
- Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasia Georganta
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Emmanouil Panagiotou
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Konstantinos Syrigos
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
| |
Collapse
|
23
|
Hardaker EL, Sanseviero E, Karmokar A, Taylor D, Milo M, Michaloglou C, Hughes A, Mai M, King M, Solanki A, Magiera L, Miragaia R, Kar G, Standifer N, Surace M, Gill S, Peter A, Talbot S, Tohumeken S, Fryer H, Mostafa A, Mulgrew K, Lam C, Hoffmann S, Sutton D, Carnevalli L, Calero-Nieto FJ, Jones GN, Pierce AJ, Wilson Z, Campbell D, Nyoni L, Martins CP, Baker T, Serrano de Almeida G, Ramlaoui Z, Bidar A, Phillips B, Boland J, Iyer S, Barrett JC, Loembé AB, Fuchs SY, Duvvuri U, Lou PJ, Nance MA, Gomez Roca CA, Cadogan E, Critichlow SE, Fawell S, Cobbold M, Dean E, Valge-Archer V, Lau A, Gabrilovich DI, Barry ST. The ATR inhibitor ceralasertib potentiates cancer checkpoint immunotherapy by regulating the tumor microenvironment. Nat Commun 2024; 15:1700. [PMID: 38402224 PMCID: PMC10894296 DOI: 10.1038/s41467-024-45996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024] Open
Abstract
The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.
Collapse
Affiliation(s)
| | | | | | - Devon Taylor
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Marta Milo
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | - Mimi Mai
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | | | | | | | - Gozde Kar
- Oncology R&D, AstraZeneca, Cambridge, UK
| | - Nathan Standifer
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
- Tempest Therapeutics, Brisbane, CA, USA
| | | | - Shaan Gill
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | | | | | | - Ali Mostafa
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Kathy Mulgrew
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | | | | | - Daniel Sutton
- Imaging and Data Analytics, AstraZeneca, Cambridge, UK
| | | | | | | | - Andrew J Pierce
- Oncology R&D, AstraZeneca, Cambridge, UK
- Crescendo Biologics Limited, Cambridge, UK
| | | | | | | | | | | | | | | | - Abdel Bidar
- CPSS, Imaging, AstraZeneca, Gothenburg, Sweden
| | - Benjamin Phillips
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Joseph Boland
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Sonia Iyer
- Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | | | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Umamaheswar Duvvuri
- UPMC Department of Otolaryngology and UPMC Hillman Cancer Center, 200 Lothrop St. Suite 500, Pittsburg, PA, 15213, USA
| | - Pei-Jen Lou
- National Taiwan University Hospital, No. 7, Chung Shan S. Rd. (Zhongshan S. Rd.), Zhongzheng Dist., Taipei City, 10002, Taiwan
| | - Melonie A Nance
- VA Pittsburgh Healthcare System, University Drive C, Pittsburg, PA, 15240, USA
| | - Carlos Alberto Gomez Roca
- Institut Claudius Regaud-Cancer Comprehensive Center, 1 Avenue Irene Joliot-Curie, IUCT-O, Toulouse, 31059 Cedex 9, France
| | | | | | | | - Mark Cobbold
- Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Alan Lau
- Oncology R&D, AstraZeneca, Cambridge, UK
| | | | | |
Collapse
|
24
|
Wang X, Yang T, Shi S, Xu C, Wang F, Dai D, Guan G, Zhang Y, Wang S, Wang J, Zhang B, Liu P, Bai X, Jin Y, Li X, Zhu C, Chen D, Xu Q, Guo Y. Heterogeneity-induced NGF-NGFR communication inefficiency promotes mitotic spindle disorganization in exhausted T cells through PREX1 suppression to impair the anti-tumor immunotherapy with PD-1 mAb in hepatocellular carcinoma. Cancer Med 2024; 13:e6736. [PMID: 38204220 PMCID: PMC10905245 DOI: 10.1002/cam4.6736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The mechanism of decreased T cells infiltrating tumor tissues in hepatocellular carcinoma is poorly understood. METHODS Cells were separated from the single-cell RNA-sequence dataset of hepatocellular carcinoma patients (GSE149614) for cell-cell communication. Flow cytometry, EDU staining, H3-Ser28 staining, confocal immunofluorescence staining, western blotting and naked microsubcutaneous tumors were performed for the mechanism of NGF-NGFR promoting proliferation. RESULTS The present study has revealed that during the process of T-cell infiltration from adjacent tissues to tumor tissues, an inefficiency in NGF-NGFR communication occurs in the tumor tissues. Importantly, NGF secreted by tumor cells interacts with NGFR present on the membranes of the infiltrated T cells, thereby promoting the proliferation through the activation of mitotic spindle signals. Mechanistically, the mediation of mitotic spindle signal activation promoting proliferation is executed by HDAC1-mediated inhibition of unclear trans-localization of PREX1. Furthermore, PD-1 mAb acts synergistically with the NGF-NGFR communication to suppress tumor progression in both mouse models and HCC patients. Additionally, NGF-NGFR communication was positively correlates with the PD-1/PDL-1 expression. However, expressions of NGF and NGFR are low in tumor tissues, which is responsible for the invasive clinicopathological features and the disappointing prognosis in HCC patients. CONCLUSION Inefficiency in NGF-NGFR communication impairs PD-1 mAb immunotherapy and could thus be utilized as a novel therapeutic target in the treatment of HCC patients in clinical practice.
Collapse
Affiliation(s)
- Xin Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tongwang Yang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical PreparationsChangsha Medical UniversityChangshaChina
| | - Shangheng Shi
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chuanshen Xu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Feng Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Deshu Dai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ge Guan
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yong Zhang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shuxian Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jianhong Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Bingliang Zhang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Peng Liu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoshuai Bai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yan Jin
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xinqiang Li
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Cunle Zhu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Dexi Chen
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Beijing Institute of HepatologyCapital Medical UniversityBeijingChina
| | - Qingguo Xu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
| | - Yuan Guo
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
25
|
Lozinski M, Bowden NA, Graves MC, Fay M, Day BW, Stringer BW, Tooney PA. ATR inhibition using gartisertib enhances cell death and synergises with temozolomide and radiation in patient-derived glioblastoma cell lines. Oncotarget 2024; 15:1-18. [PMID: 38227740 DOI: 10.18632/oncotarget.28551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines. We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| | - Nikola A Bowden
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Moira C Graves
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| | - Michael Fay
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
- GenesisCare, Newcastle, NSW, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Brett W Stringer
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, NSW, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, NSW, Australia
| |
Collapse
|
26
|
Dillon MT, Guevara J, Mohammed K, Patin EC, Smith SA, Dean E, Jones GN, Willis SE, Petrone M, Silva C, Thway K, Bunce C, Roxanis I, Nenclares P, Wilkins A, McLaughlin M, Jayme-Laiche A, Benafif S, Nintos G, Kwatra V, Grove L, Mansfield D, Proszek P, Martin P, Moore L, Swales KE, Banerji U, Saunders MP, Spicer J, Forster MD, Harrington KJ. Durable responses to ATR inhibition with ceralasertib in tumors with genomic defects and high inflammation. J Clin Invest 2024; 134:e175369. [PMID: 37934611 PMCID: PMC10786692 DOI: 10.1172/jci175369] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUNDPhase 1 study of ATRinhibition alone or with radiation therapy (PATRIOT) was a first-in-human phase I study of the oral ATR (ataxia telangiectasia and Rad3-related) inhibitor ceralasertib (AZD6738) in advanced solid tumors.METHODSThe primary objective was safety. Secondary objectives included assessment of antitumor responses and pharmacokinetic (PK) and pharmacodynamic (PD) studies. Sixty-seven patients received 20-240 mg ceralasertib BD continuously or intermittently (14 of a 28-day cycle).RESULTSIntermittent dosing was better tolerated than continuous, which was associated with dose-limiting hematological toxicity. The recommended phase 2 dose of ceralasertib was 160 mg twice daily for 2 weeks in a 4-weekly cycle. Modulation of target and increased DNA damage were identified in tumor and surrogate PD. There were 5 (8%) confirmed partial responses (PRs) (40-240 mg BD), 34 (52%) stable disease (SD), including 1 unconfirmed PR, and 27 (41%) progressive disease. Durable responses were seen in tumors with loss of AT-rich interactive domain-containing protein 1A (ARID1A) and DNA damage-response defects. Treatment-modulated tumor and systemic immune markers and responding tumors were more immune inflamed than nonresponding.CONCLUSIONCeralasertib monotherapy was tolerated at 160 mg BD intermittently and associated with antitumor activity.TRIAL REGISTRATIONClinicaltrials.gov: NCT02223923, EudraCT: 2013-003994-84.FUNDINGCancer Research UK, AstraZeneca, UK Department of Health (National Institute for Health Research), Rosetrees Trust, Experimental Cancer Medicine Centre.
Collapse
Affiliation(s)
- Magnus T. Dillon
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jeane Guevara
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Kabir Mohammed
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Emma Dean
- Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | | - Marcella Petrone
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Carlos Silva
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Khin Thway
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Catey Bunce
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | | | - Anna Wilkins
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Adoracion Jayme-Laiche
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Sarah Benafif
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Georgios Nintos
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Vineet Kwatra
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Lorna Grove
- The Institute of Cancer Research, London, United Kingdom
| | | | - Paula Proszek
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Philip Martin
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Luiza Moore
- Oncology R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | | | - Udai Banerji
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - James Spicer
- King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Martin D. Forster
- UCL Cancer Institute and University College London Hospital NHS Foundation Trust, London, United Kingdom
| | - Kevin J. Harrington
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
27
|
Werner E, Wiegand M, Moran J, Lebœuf D. Rapid Access to Densely Functionalized Cyclopentenyl Sulfoximines through a Sc-Catalyzed Aza-Piancatelli Reaction. Org Lett 2024. [PMID: 38190622 DOI: 10.1021/acs.orglett.3c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sulfoximines make up a class of compounds of growing interest for crop science and medicinal chemistry, but methods for directly incorporating them into complex molecular scaffolds are lacking. Here we report a scandium-catalyzed variant of the aza-Piancatelli cyclization that can directly incorporate sulfoximines as nucleophiles rather than the classical aniline substrates. Starting from 2-furylcarbinols and sulfoximines, the reaction provides direct access to 4-sulfoximinocyclopentenones, a new scaffold bearing cyclopentenone and sulfoximine motifs, both of interest for bioactive compounds.
Collapse
Affiliation(s)
- Emilie Werner
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Milena Wiegand
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
28
|
Borenäs M, Umapathy G, Lind DE, Lai WY, Guan J, Johansson J, Jennische E, Schmidt A, Kurhe Y, Gabre JL, Aniszewska A, Strömberg A, Bemark M, Hall MN, den Eynden JV, Hallberg B, Palmer RH. ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proc Natl Acad Sci U S A 2024; 121:e2315242121. [PMID: 38154064 PMCID: PMC10769851 DOI: 10.1073/pnas.2315242121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
High-risk neuroblastoma (NB) is a significant clinical challenge. MYCN and Anaplastic Lymphoma Kinase (ALK), which are often involved in high-risk NB, lead to increased replication stress in cancer cells, suggesting therapeutic strategies. We previously identified an ATR (ataxia telangiectasia and Rad3-related)/ALK inhibitor (ATRi/ALKi) combination as such a strategy in two independent genetically modified mouse NB models. Here, we identify an underlying molecular mechanism, in which ALK signaling leads to phosphorylation of ATR and CHK1, supporting an effective DNA damage response. The importance of ALK inhibition is supported by mouse data, in which ATRi monotreatment resulted in a robust initial response, but subsequent relapse, in contrast to a 14-d ALKi/ATRi combination treatment that resulted in a robust and sustained response. Finally, we show that the remarkable response to the 14-d combined ATR/ALK inhibition protocol reflects a robust differentiation response, reprogramming tumor cells to a neuronal/Schwann cell lineage identity. Our results identify an ability of ATR inhibition to promote NB differentiation and underscore the importance of further exploring combined ALK/ATR inhibition in NB, particularly in high-risk patient groups with oncogene-induced replication stress.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Dan E. Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Joel Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, Basel University, Basel4056, Switzerland
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Agata Aniszewska
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg SE-405 30, Sweden
| | | | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| |
Collapse
|
29
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
30
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
31
|
Wilson HP, Aplin AE. Site matters in metastatic melanoma. Trends Cancer 2023; 9:603-605. [PMID: 37331825 PMCID: PMC10823917 DOI: 10.1016/j.trecan.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023]
Abstract
Metastasis and cross-therapy resistance to mitogen-activated protein kinase (MAPK) inhibition and immune checkpoint blockade (ICB) are significant clinical issues in melanoma. A new study in NatureMedicine by Liu et al. utilizes metastatic melanoma (MM) tumors from a rapid autopsy cohort to dissect genomic and transcriptomic features of therapy resistance, organ-specific gene signatures, and crosstalk between MM and organ sites.
Collapse
Affiliation(s)
- Haley P Wilson
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
32
|
Kamrani A, Hosseinzadeh R, Shomali N, Heris JA, Shahabi P, Mohammadinasab R, Sadeghvand S, Ghahremanzadeh K, Sadeghi M, Akbari M. New immunotherapeutic approaches for cancer treatment. Pathol Res Pract 2023; 248:154632. [PMID: 37480597 DOI: 10.1016/j.prp.2023.154632] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/24/2023]
Abstract
Neoplasms are a worldwide recognized non-contagious disease which has the most mortality rate after cardiovascular diseases. For decades, there has been a vast amount of study on treatment methods of cancer which has led to conventional therapies such as chemotherapy, radiation therapy, surgery and so on. Clinicians and researchers believed that there is an urgent need, considering the high rate of incidence and prevalence, for an alternative treatment option which is more efficacious and has less adverse effects than the above-mentioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and became one of the fastest developing therapeutic approaches. Different kinds of immunotherapies are FDA approved and available for treatment of various cancer types. In this review, we have summarized the major immunotherapy methods including checkpoint inhibitors, CAR T cell therapies and cancer vaccines. Furthermore, application of combination therapy, precision medicine, biomarker discovery, overcoming resistance and reduction of adverse effects are discussed in this study.
Collapse
Affiliation(s)
- Amin Kamrani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammadreza Sadeghi
- Department of molecular medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Klapp V, Álvarez-Abril B, Leuzzi G, Kroemer G, Ciccia A, Galluzzi L. The DNA Damage Response and Inflammation in Cancer. Cancer Discov 2023; 13:1521-1545. [PMID: 37026695 DOI: 10.1158/2159-8290.cd-22-1220] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/27/2023] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Genomic stability in normal cells is crucial to avoid oncogenesis. Accordingly, multiple components of the DNA damage response (DDR) operate as bona fide tumor suppressor proteins by preserving genomic stability, eliciting the demise of cells with unrepairable DNA lesions, and engaging cell-extrinsic oncosuppression via immunosurveillance. That said, DDR sig-naling can also favor tumor progression and resistance to therapy. Indeed, DDR signaling in cancer cells has been consistently linked to the inhibition of tumor-targeting immune responses. Here, we discuss the complex interactions between the DDR and inflammation in the context of oncogenesis, tumor progression, and response to therapy. SIGNIFICANCE Accumulating preclinical and clinical evidence indicates that DDR is intimately connected to the emission of immunomodulatory signals by normal and malignant cells, as part of a cell-extrinsic program to preserve organismal homeostasis. DDR-driven inflammation, however, can have diametrically opposed effects on tumor-targeting immunity. Understanding the links between the DDR and inflammation in normal and malignant cells may unlock novel immunotherapeutic paradigms to treat cancer.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Tumor Stroma Interactions, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Beatriz Álvarez-Abril
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Department of Hematology and Oncology, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Giuseppe Leuzzi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, New York, New York
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York
- Sandra and Edward Meyer Cancer Center, New York, New York
- Caryl and Israel Englander Institute for Precision Medicine, New York, New York
| |
Collapse
|
34
|
Ding X, Hua YJ, Zou X, Chen XZ, Zhang XM, Xu B, Ouyang YF, Tu ZW, Li HF, Duan CY, Zhang WJ, You R, Liu YP, Liu YL, Yang Q, Huang PY, Wang SN, Fan J, Chen MY. Camrelizumab plus famitinib in patients with recurrent or metastatic nasopharyngeal carcinoma treated with PD-1 blockade: data from a multicohort phase 2 study. EClinicalMedicine 2023; 61:102043. [PMID: 37415845 PMCID: PMC10319986 DOI: 10.1016/j.eclinm.2023.102043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023] Open
Abstract
Background Treatment options for patients with recurrent/metastatic nasopharyngeal carcinoma (RM-NPC) are not clear after progression on previous treatment with PD-(L)1 inhibitor; critical gaps in evidence remain for such cases. Immunotherapy combined with antiangiogenic therapy has been reported to have synergistic antitumor activity. Therefore, we evaluated the efficacy and safety of camrelizumab plus famitinib in patients with RM-NPC who failed treatment with PD-1 inhibitor-containing regimens. Methods This multicenter, adaptive Simon minimax two-stage, phase II study enrolled patients with RM-NPC refractory to at least one line of systemic platinum-containing chemotherapy and anti-PD-(L)1 immunotherapy. The patient received camrelizumab 200 mg every 3 weeks and famitinib 20 mg once per day. The primary endpoint was objective response rate (ORR), and the study could be stopped early as criterion for efficacy was met (>5 responses). Key secondary endpoints included time to response (TTR), disease control rate (DCR), progression-free survival (PFS), duration of response (DoR), overall survival (OS), and safety. This trial was registered with ClinicalTrials.gov, NCT04346381. Findings Between October 12, 2020, and December 6, 2021, a total of 18 patients were enrolled since six responses were observed. The ORR was 33.3% (90% CI, 15.6-55.4) and the DCR was 77.8% (90% CI, 56.1-92.0). The median TTR was 2.1 months, the median DoR was 4.2 months (90% CI, 3.0-not reach), and the median PFS was 7.2 months (90% CI, 4.4-13.3), with a median follow-up duration of 16.7 months. Treatment-related adverse events (TRAEs) of grade ≥3 were reported in eight (44.4%) patients, with the most common being decreased platelet count and/or neutropenia (n = 4, 22.2%). Treatment-related serious AEs occurred in six (33.3%) patients, and no deaths occurred due to TRAEs. Four patients developed grade ≥3 nasopharyngeal necrosis; two of them developed grade 3-4 major epistaxis, and they were cured by nasal packing and vascular embolization. Interpretation Camrelizumab plus famitinib exhibited encouraging efficacy and tolerable safety profiles in patients with RM-NPC who failed frontline immunotherapy. Further studies are needed to confirm and expand these findings. Funding Jiangsu Hengrui Pharmaceutical Co., Ltd.
Collapse
Affiliation(s)
- Xi Ding
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yi-Jun Hua
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiong Zou
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiao-Zhong Chen
- Department of Head and Neck Tumor Radiotherapy, Cancer Hospital of the University of Chinese Academy of Sciences Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xi-Mei Zhang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute & Hospital, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Bei Xu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Feng Ouyang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Zi-Wei Tu
- Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang 330029, China
| | - Hui-Feng Li
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Chong-Yang Duan
- Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Jing Zhang
- Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - You-Ping Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yong-Long Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Qi Yang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Pei-Yu Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shu-Ni Wang
- Clinical Research & Development, Jiangsu Hengrui Medicine Co., Ltd, Shenyang 110016, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
35
|
Lo JH, Agarwal R, Goff LW, Heumann TR. Immunotherapy in Biliary Tract Cancers: Current Standard-of-Care and Emerging Strategies. Cancers (Basel) 2023; 15:3312. [PMID: 37444422 PMCID: PMC10340362 DOI: 10.3390/cancers15133312] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Biliary tract cancers (BTCs), comprising intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder adenocarcinoma, continue to be challenging to manage. Conventional chemotherapy regimens for advanced disease are limited in both options and benefits, and more effective perioperative regimens are also needed. Over the last decade, immunotherapy has had a profound impact on the management of many solid tumor types, particularly in using immune checkpoint inhibition to enable a tumor-directed T cell response. Immunotherapy administered on its own has had limited utility in BTCs, in part due to a hostile immune microenvironment and the relative infrequency of biomarker-based tumor-agnostic indications for immunotherapy. However, immunotherapy in conjunction with chemotherapy, molecularly targeted therapies, and/or anti-angiogenic therapies has gained traction, supported by evidence that these agents can impart favorable immunomodulatory effects on the tumor microenvironment. The TOPAZ-1 trial led to the first BTC-specific immunotherapy approval, establishing the combination of durvalumab with gemcitabine and cisplatin as the preferred first-line treatment for advanced or metastatic disease. Recently, the KEYNOTE-966 trial showed positive results for the combination of pembrolizumab with gemcitabine and cisplatin in the same setting, adding further evidence for the addition of immune checkpoint inhibition to the standard chemotherapy backbone. Meanwhile, advances in the molecular profiling of BTCs has contributed to the recent proliferation of molecularly targeted therapeutics for the subset of BTCs harboring alterations in IDH1, FGFR2, MAP kinase signaling, HER2, and beyond, and there has been great interest in investigating combinations of these agents with immunotherapy. Emerging immunotherapy strategies beyond immune checkpoint inhibition are also being studied in BTCs, and these include immunostimulatory receptor agonists, Wnt signaling modulators, adoptive cell therapy, and cancer vaccines. A large number of trials are underway to explore promising new combinations and immune-targeted strategies, offering opportunities to expand the role of immunotherapy in BTC management in the near future.
Collapse
Affiliation(s)
| | | | | | - Thatcher R. Heumann
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
36
|
Hernandez-Martinez JM, Rosell R, Arrieta O. Somatic and germline ATM variants in non-small-cell lung cancer: Therapeutic implications. Crit Rev Oncol Hematol 2023:104058. [PMID: 37343657 DOI: 10.1016/j.critrevonc.2023.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
ATM is an apical kinase of the DNA damage response involved in the repair of DNA double-strand breaks. Germline ATM variants (gATM) have been associated with an increased risk of developing lung adenocarcinoma (LUAD), and approximately 9% of LUAD tumors harbor somatic ATM mutations (sATM). Biallelic carriers of pathogenic gATM exhibit a plethora of immunological abnormalities, but few studies have evaluated the contribution of immune dysfunction to lung cancer susceptibility. Indeed, little is known about the clinicopathological characteristics of lung cancer patients with sATM or gATM alterations. The introduction of targeted therapies and immunotherapies, and the increasing number of clinical trials evaluating treatment combinations, warrants a careful reexamination of the benefits and harms that different therapeutic approaches have had in lung cancer patients with sATM or gATM. This review will discuss the role of ATM in the pathogenesis of lung cancer, highlighting potential therapeutic approaches to manage ATM-deficient lung cancers.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan); CONACYT-Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Rafael Rosell
- Institut d'Investigació en Ciències Germans Trias i Pujol, Badalona, Spain; (4)Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Oscar Arrieta
- Thoracic Oncology Unit and Experimental Oncology Laboratory, Instituto Nacional de Cancerología de México (INCan).
| |
Collapse
|
37
|
Priya B, Ravi S, Kirubakaran S. Targeting ATM and ATR for cancer therapeutics: inhibitors in clinic. Drug Discov Today 2023:103662. [PMID: 37302542 DOI: 10.1016/j.drudis.2023.103662] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/22/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
The DNA Damage and Response (DDR) pathway ensures accurate information transfer from one generation to the next. Alterations in DDR functions have been connected to cancer predisposition, progression, and response to therapy. DNA double-strand break (DSB) is one of the most detrimental DNA defects, causing major chromosomal abnormalities such as translocations and deletions. ATR and ATM kinases recognize this damage and activate proteins involved in cell cycle checkpoint, DNA repair, and apoptosis. Cancer cells have a high DSB burden, and therefore rely on DSB repair for survival. Therefore, targeting DSB repair can sensitize cancer cells to DNA-damaging agents. This review focuses on ATM and ATR, their roles in DNA damage and repair pathways, challenges in targeting them, and inhibitors that are in current clinical trials.
Collapse
Affiliation(s)
- Bhanu Priya
- Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Srimadhavi Ravi
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India
| | - Sivapriya Kirubakaran
- Chemistry, Indian Institute of Technology Gandhinagar, Palaj Campus, Gujarat 382355, India.
| |
Collapse
|
38
|
Shi Z, Chen B, Han X, Gu W, Liang S, Wu L. Genomic and molecular landscape of homologous recombination deficiency across multiple cancer types. Sci Rep 2023; 13:8899. [PMID: 37264024 DOI: 10.1038/s41598-023-35092-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
Homologous recombination deficiency (HRD) causes faulty double-strand break repair and is a prevalent cause of tumorigenesis. However, the incidence of HRD and its clinical significance in pan-cancer patients remain unknown. Using computational analysis of Single-nucleotide polymorphism array data from 10,619 cancer patients, we demonstrate that HRD frequently occurs across multiple cancer types. Analysis of the pan-cancer cohort revealed that HRD is not only a biomarker for ovarian cancer and triple-negative breast cancer, but also has clinical prognostic value in numerous cancer types, including adrenocortical cancer and thymoma. We discovered that homologous recombination-related genes have a high mutation or deletion frequency. Pathway analysis shows HRD is positively correlated with the DNA damage response and the immune-related signaling pathways. Single cell RNA sequencing of tumor-infiltrating lymphocytes reveals a significantly higher proportion of exhausted T cells in HRD patients, indicating pre-existing immunity. Finally, HRD could be utilized to predict pan-cancer patients' responses to Programmed cell death protein 1 immunotherapy. In summary, our work establishes a comprehensive map of HRD in pan-cancer. The findings have significant implications for expanding the scope of Poly ADP-ribose polymerase inhibitor therapy and, possibly, immunotherapy.
Collapse
Affiliation(s)
- Zhiwen Shi
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Bolin Chen
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Xiao Han
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute of Planned Parenthood Research, State Key Laboratory of Genetic Engineering at School of Life Sciences, Institute of Reproduction and Development, Fudan University, Shanghai, 200032, China
| | - Weiyue Gu
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
| | - Shuzhi Liang
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Lin Wu
- Department of Thoracic Medical Oncology,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
| |
Collapse
|
39
|
Ascierto PA, Lipson EJ, Dummer R, Larkin J, Long GV, Sanborn RE, Chiarion-Sileni V, Dréno B, Dalle S, Schadendorf D, Callahan MK, Nyakas M, Atkinson V, Gomez-Roca CA, Yamazaki N, Tawbi HA, Sarkis N, Warad D, Dolfi S, Mitra P, Suryawanshi S, Grob JJ. Nivolumab and Relatlimab in Patients With Advanced Melanoma That Had Progressed on Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy: Results From the Phase I/IIa RELATIVITY-020 Trial. J Clin Oncol 2023; 41:2724-2735. [PMID: 36780608 PMCID: PMC10431305 DOI: 10.1200/jco.22.02072] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023] Open
Abstract
PURPOSE Nivolumab and relatlimab activity in advanced melanoma with prior progression on anti-programmed death-1/programmed death ligand 1 (PD-(L)1)-containing regimens is under investigation. RELATIVITY-047 demonstrated significantly improved progression-free survival (PFS) for nivolumab and relatlimab over nivolumab in previously untreated advanced melanoma. METHODS The phase I/IIa, open-label RELATIVITY-020 trial part D assessed efficacy and safety of nivolumab and relatlimab in advanced melanoma with progression during, or within 3 months of, 1 (D1) or ≥ 1 (D2) anti-PD-(L)1-containing regimens. Safety was a primary end point. Objective response rate (coprimary end point) and PFS by blinded independent central review (BICR) were assessed. RESULTS Five hundred eighteen patients (D1 = 354; D2 = 164) received nivolumab and relatlimab. Among evaluable patients, the objective response rate by BICR was 12.0% (95% CI, 8.8 to 15.8) in D1 (n = 351) and 9.2% (95% CI, 5.2 to 14.7) in D2 (n = 163). Responses appeared to be enriched among patients with tumors expressing programmed death ligand 1 or lymphocyte activation gene 3; however, responses were observed regardless of programmed death ligand 1 and lymphocyte activation gene 3 expression (1%). The median duration of response was not reached (95% CI, 12.9 to not reached) in D1 and 12.8 months (95% CI, 6.9 to 12.9) in D2. The median PFS by BICR was 2.1 months (95% CI, 1.9 to 3.5) in D1 and 3.2 months (95% CI, 1.9 to 3.6) in D2; the 6-month PFS rate was 29.1% (95% CI, 24.2 to 34.1) and 27.7% (95% CI, 20.5 to 35.4), respectively. The grade 3-4 treatment-related adverse event incidence was 15.0% in D1 and 12.8% in D2. One case of grade 3 myocarditis and no treatment-related deaths occurred across part D. CONCLUSION Nivolumab and relatlimab had a manageable safety profile and demonstrated durable clinical activity in a proportion of patients with heavily pretreated advanced melanoma with prior progression on anti-PD-(L)1-containing regimens. [Media: see text].
Collapse
Affiliation(s)
- Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale,” Naples, Italy
| | - Evan J. Lipson
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - James Larkin
- Medical Oncology, The Institute of Cancer Research, London, London, UK
| | - Georgina V. Long
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Rachel E. Sanborn
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR
| | | | - Brigitte Dréno
- Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes, France
| | - Stéphane Dalle
- Unit of Dermatology, Hospices Civils de Lyon, Cancer Research Center of Lyon, Pierre-Bénite, France
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, and the German Cancer Consortium, Essen, Germany
| | - Margaret K. Callahan
- Immunotherapeutics Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marta Nyakas
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Victoria Atkinson
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Carlos Alberto Gomez-Roca
- Department of Medicine & Clinical Research Unit, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naomey Sarkis
- Relatlimab Clinical Development Melanoma, Bristol Myers Squibb, Princeton, NJ
| | - Deepti Warad
- Relatlimab Clinical Development Melanoma, Bristol Myers Squibb, Princeton, NJ
| | - Sonia Dolfi
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ
| | - Priyam Mitra
- Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, NJ
| | | | - Jean-Jacques Grob
- Dermatology, Aix-Marseille University, CHU Timone, Marseille, France
| |
Collapse
|
40
|
Yano K, Shiotani B. Emerging strategies for cancer therapy by ATR inhibitors. Cancer Sci 2023. [PMID: 37189251 DOI: 10.1111/cas.15845] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.
Collapse
Affiliation(s)
- Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
41
|
Li Y, Wang X, Hou X, Ma X. Could Inhibiting the DNA Damage Repair Checkpoint Rescue Immune-Checkpoint-Inhibitor-Resistant Endometrial Cancer? J Clin Med 2023; 12:jcm12083014. [PMID: 37109350 PMCID: PMC10144486 DOI: 10.3390/jcm12083014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Endometrial cancer (EC) is increasingly undermining female health worldwide, with poor survival rates for advanced or recurrent/metastatic diseases. The application of immune checkpoint inhibitors (ICIs) has opened a window of opportunity for patients with first-line therapy failure. However, there is a subset of patients with endometrial cancer who remain insensitive to immunotherapy alone. Therefore, it is necessary to develop new therapeutic agents and further explore reliable combinational strategies to optimize the efficacy of immunotherapy. DNA damage repair (DDR) inhibitors as novel targeted drugs are able to generate genomic toxicity and induce cell death in solid tumors, including EC. Recently, growing evidence has demonstrated the DDR pathway modulates innate and adaptive immunity in tumors. In this review, we concentrate on the exploration of the intrinsic correlation between DDR pathways, especially the ATM-CHK2-P53 pathway and the ATR-CHK1-WEE1 pathway, and oncologic immune response, as well as the feasibility of adding DDR inhibitors to ICIs for the treatment of patients with advanced or recurrent/metastatic EC. We hope that this review will offer some beneficial references to the investigation of immunotherapy and provide a reasonable basis for "double-checkpoint inhibition" in EC.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Hou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
42
|
Concannon K, Morris BB, Gay CM, Byers LA. Combining targeted DNA repair inhibition and immune-oncology approaches for enhanced tumor control. Mol Cell 2023; 83:660-680. [PMID: 36669489 PMCID: PMC9992136 DOI: 10.1016/j.molcel.2022.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/08/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023]
Abstract
Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.
Collapse
Affiliation(s)
- Kyle Concannon
- Department of Hematology/Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
43
|
Liu C, Wang X, Qin W, Tu J, Li C, Zhao W, Ma L, Liu B, Qiu H, Yuan X. Combining radiation and the ATR inhibitor berzosertib activates STING signaling and enhances immunotherapy via inhibiting SHP1 function in colorectal cancer. Cancer Commun (Lond) 2023; 43:435-454. [PMID: 36855844 PMCID: PMC10091106 DOI: 10.1002/cac2.12412] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have shown a moderate response in colorectal cancer (CRC) with deficient mismatch repair (dMMR) functions and poor response in patients with proficient MMR (pMMR). pMMR tumors are generally immunogenically "cold", emphasizing combination strategies to turn the "cold" tumor "hot" to enhance the efficacy of ICIs. ATR inhibitors (ATRi) have been proven to cooperate with radiation to promote antitumor immunity, but it is unclear whether ATRi could facilitate the efficacy of IR and ICI combinations in CRCs. This study aimed to investigate the efficacy of combining ATRi, irradiation (IR), and anti-PD-L1 antibodies in CRC mouse models with different microsatellite statuses. METHODS The efficacy of combining ATRi, IR, and anti-PD-L1 antibodies was evaluated in CRC tumors. The tumor microenvironment and transcriptome signatures were investigated under different treatment regimens. The mechanisms were explored via cell viability assay, flow cytometry, immunofluorescence, immunoblotting, co-immunoprecipitation, and real-time quantitative PCR in multiple murine and human CRC cell lines. RESULTS Combining ATRi berzosertib and IR enhanced CD8+ T cell infiltration and enhanced the efficacy of anti-PD-L1 therapy in mouse CRC models with different microsatellite statuses. The mechanistic study demonstrated that IR + ATRi could activate both the canonical cGAS-STING-pTBK1/pIRF3 axis by increasing cytosolic double-stranded DNA levels and the non-canonical STING signaling by attenuating SHP1-mediated inhibition of the TRAF6-STING-p65 axis, via promoting SUMOylation of SHP1 at lysine 127. By boosting the STING signaling, IR + ATRi induced type I interferon-related gene expression and strong innate immune activation and reinvigorated the cold tumor microenvironment, thus facilitating immunotherapy. CONCLUSIONS The combination of ATRi and IR could facilitate anti-PD-L1 therapy by promoting STING signaling in CRC models with different microsatellite statuses. The new combination strategy raised by our study is worth investigating in the management of CRC.
Collapse
Affiliation(s)
- Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xi Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Chunya Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Li Ma
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| |
Collapse
|
44
|
Targeting the DNA damage response for cancer therapy. Biochem Soc Trans 2023; 51:207-221. [PMID: 36606678 PMCID: PMC9988002 DOI: 10.1042/bst20220681] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
The DNA damage response (DDR) is an elegant system, coordinating DNA repair with cell cycle checkpoints, that evolved to protect living organisms from the otherwise fatal levels of DNA damage inflicted by endogenous and environmental sources. Since many agents used to treat cancer; radiotherapy and cytotoxic chemotherapy, work by damaging DNA the DDR represents a mechanism of resistance. The original rational for the development of drugs to inhibit the DDR was to overcome this mechanism of resistance but clinical studies using this approach have not led to improvements in the therapeutic index. A more exciting approach is to exploit cancer-specific defects in the DDR, that represent vulnerabilities in the tumour and an opportunity to selectively target the tumour. PARP inhibitors (PARPi) selectively kill homologous recombination repair defective (HRD, e.g. through BRCA mutation) cells. This approach has proven successful clinically and there are now six PARPi approved for cancer therapy. Drugs targeting other aspects of the DDR are under pre-clinical and clinical evaluation as monotherapy agents and in combination studies. For this promising approach to cancer therapy to be fully realised reliable biomarkers are needed to identify tumours with the exploitable defect for monotherapy applications. The possibility that some combinations may result in toxicity to normal tissues also needs to be considered. A brief overview of the DDR, the development of inhibitors targeting the DDR and the current clinical status of such drugs is described here.
Collapse
|
45
|
Vendetti FP, Pandya P, Clump DA, Schamus-Haynes S, Tavakoli M, diMayorca M, Islam NM, Chang J, Delgoffe GM, Beumer JH, Bakkenist CJ. The schedule of ATR inhibitor AZD6738 can potentiate or abolish antitumor immune responses to radiotherapy. JCI Insight 2023; 8:e165615. [PMID: 36810257 PMCID: PMC9977511 DOI: 10.1172/jci.insight.165615] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/05/2023] [Indexed: 02/23/2023] Open
Abstract
Inhibitors of the DNA damage signaling kinase ATR increase tumor cell killing by chemotherapies that target DNA replication forks but also kill rapidly proliferating immune cells including activated T cells. Nevertheless, ATR inhibitor (ATRi) and radiotherapy (RT) can be combined to generate CD8+ T cell-dependent antitumor responses in mouse models. To determine the optimal schedule of ATRi and RT, we determined the impact of short-course versus prolonged daily treatment with AZD6738 (ATRi) on responses to RT (days 1-2). Short-course ATRi (days 1-3) plus RT caused expansion of tumor antigen-specific, effector CD8+ T cells in the tumor-draining lymph node (DLN) at 1 week after RT. This was preceded by acute decreases in proliferating tumor-infiltrating and peripheral T cells and a rapid proliferative rebound after ATRi cessation, increased inflammatory signaling (IFN-β, chemokines, particularly CXCL10) in tumors, and an accumulation of inflammatory cells in the DLN. In contrast, prolonged ATRi (days 1-9) prevented the expansion of tumor antigen-specific, effector CD8+ T cells in the DLN, and entirely abolished the therapeutic benefit of short-course ATRi with RT and anti-PD-L1. Our data argue that ATRi cessation is essential to allow CD8+ T cell responses to both RT and immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Frank P. Vendetti
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pinakin Pandya
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A. Clump
- Department of Radiation Oncology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Sandra Schamus-Haynes
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Meysam Tavakoli
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria diMayorca
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Naveed M. Islam
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jina Chang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Greg M. Delgoffe
- Department of Immunology and
- Department of Medicine, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jan H. Beumer
- Department of Medicine, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Hematology-Oncology, Department of Medicine, and
| | - Christopher J. Bakkenist
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Liu M, Zhang K, Li Q, Pang H, Pan Z, Huang X, Wang L, Wu F, He G. Recent Advances on Small-Molecule Bromodomain-Containing Histone Acetyltransferase Inhibitors. J Med Chem 2023; 66:1678-1699. [PMID: 36695774 DOI: 10.1021/acs.jmedchem.2c01638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In recent years, substantial research has been conducted on molecular mechanisms and inhibitors targeting bromodomains (BRDs) and extra-terminal (BET) family proteins. On this basis, non-BET BRD is gradually becoming a research hot spot. BRDs are abundant in histone acetyltransferase (HAT)-associated activating transcription factors, and BRD-containing HATs have been linked to cancer, inflammation, and viral replication. Therefore, the development of BRD-containing HATs as chemical probes is useful for understanding the specific biological roles of BRDs in diseases and drug discovery. Several types of BRD-containing HATs, including CBP/P300, PCAF/GCN5, and TAF1, are discussed in this context in terms of their structures, functions, and small-molecule inhibitors. Additionally, progress in BRD inhibitors/chemical probes and proteolysis targeting chimeras in terms of drug design, biological activity, and disease application are summarized. These findings provide insights into the development of BRD inhibitors as potential drug candidates for various diseases.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaiyao Zhang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qinjue Li
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Haiying Pang
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaowei Huang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Lian Wang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Fengbo Wu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gu He
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
47
|
Liu Y, Yu L, Liang Y, Cheng X, Jiang S, Yu H, Zhang Z, Lu L, Qu B, Chen Y, Zhang X. Research landscape and trends of melanoma immunotherapy: A bibliometric analysis. Front Oncol 2023; 12:1024179. [PMID: 36698407 PMCID: PMC9868470 DOI: 10.3389/fonc.2022.1024179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Immunotherapy for lung cancer has been a hot research area for years. This bibliometric analysis was intended to present research trends on melanoma immunotherapy. Method On April 1, 2022, the authors identified 2,109 papers on melanoma immunotherapy using the Web of Science and extracted their general information and the total number of citations. The authors then conducted a bibliometric analysis to present the research landscape, clarify the research trends, and determine the most cited papers (top-papers) as well as major journals on melanoma immunotherapy. Subsequently, recent research hotspots were identified by analyzing the latest articles in major journals. Results The total and median number of citations of these 2,109 papers on melanoma immunotherapy was 137,686 and 11, respectively. "Improved survival with ipilimumab in patients with metastatic melanoma" by Hodi et al. was the most cited paper (9,824 citations). Among the journals, the top-paper number (16), average citations per paper (2,510.7), and top-papers rate (100%) of New England Journal of Medicine were the highest. Corresponding authors represented the USA took part in most articles (784). Since 2016, the hottest research area has changed from CTLA-4 to PD-1. Conclusions This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on 2,109 relevant publications, and further suggests future research directions. The researchers can benefit in selecting journals and in finding potential collaborators. This study can help researchers gain a comprehensive impression of the research landscape, historical development, and current hotspots in melanoma immunotherapy and can provide inspiration for future research.
Collapse
Affiliation(s)
- Yanhao Liu
- *Correspondence: Xiaotao Zhang, ; Yanhao Liu,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Dong R, Chen S, Lu F, Zheng N, Peng G, Li Y, Yang P, Wen H, Qiu Q, Wang Y, Wu H, Liu M. Models for Predicting Response to Immunotherapy and Prognosis in Patients with Gastric Cancer: DNA Damage Response Genes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4909544. [PMID: 36578802 PMCID: PMC9792237 DOI: 10.1155/2022/4909544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Objective DNA damage response (DDR) is a complex system that maintains genetic integrity and the stable replication and transmission of genetic material. m6A modifies DDR-related gene expression and affects the balance of DNA damage response in tumor cells. In this study, a risk model based on m6A-modified DDR-related gene was established to evaluate its role in patients with gastric cancer. Methods We downloaded 639 DNA damage response genes from the Gene Set Enrichment Analysis (GSEA) database and constructed risk score models using typed differential genes. We used Kaplan-Meier curves and risk curves to verify the clinical relevance of the model, which was then validated with the univariate and multifactorial Cox analysis, ROC, C-index, and nomogram, and finally this model was used to evaluate the correlation of the risk score model with immune microenvironment, microsatellite instability (MSI), tumor mutational burden (TMB), and immune checkpoints. Results In this study, 337 samples in The Cancer Genome Atlas (TCGA) database were used as training set to construct a DDR-related gene model, and GSE84437 was used as external data set for verification. We found that the prognosis and immunotherapy effect of gastric cancer patients in the low-risk group were significantly better than those in the high-risk group. Conclusion We screened eight DDR-related genes (ZBTB7A, POLQ, CHEK1, NPDC1, RAMP1, AXIN2, SFRP2, and APOD) to establish a risk model, which can predict the prognosis of gastric cancer patients and guide the clinical implementation of immunotherapy.
Collapse
Affiliation(s)
- Rui Dong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Shuran Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Fei Lu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Ni Zheng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Guisen Peng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yan Li
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pan Yang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Quanwei Qiu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yitong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
49
|
Repurposing of Commercially Existing Molecular Target Therapies to Boost the Clinical Efficacy of Immune Checkpoint Blockade. Cancers (Basel) 2022; 14:cancers14246150. [PMID: 36551637 PMCID: PMC9776741 DOI: 10.3390/cancers14246150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) is now standard of care for several metastatic epithelial cancers and prolongs life expectancy for a significant fraction of patients. A hostile tumor microenvironment (TME) induced by intrinsic oncogenic signaling induces an immunosuppressive niche that protects the tumor cells, limiting the durability and efficacy of ICB therapies. Addition of receptor tyrosine kinase inhibitors (RTKi) as potential modulators of an unfavorable local immune environment has resulted in moderate life expectancy improvement. Though the combination strategy of ICB and RTKi has shown significantly better results compared to individual treatment, the benefits and adverse events are additive whereas synergy of benefit would be preferable. There is therefore a need to investigate the potential of inhibitors other than RTKs to reduce malignant cell survival while enhancing anti-tumor immunity. In the last five years, preclinical studies have focused on using small molecule inhibitors targeting cell cycle and DNA damage regulators such as CDK4/6, CHK1 and poly ADP ribosyl polymerase (PARP) to selectively kill tumor cells and enhance cytotoxic immune responses. This review provides a comprehensive overview of the available drugs that attenuate immunosuppression and overcome hostile TME that could be used to boost FDA-approved ICB efficacy in the near future.
Collapse
|
50
|
Clark CA, Yang ES. Therapeutic Targeting of DNA Damage Repair in the Era of Precision Oncology and Immune Checkpoint Inhibitors. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2022; 6:31-49. [PMID: 36751656 PMCID: PMC9888518 DOI: 10.36401/jipo-22-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
Cancer manifestation is a multistep process involving accumulation of various genetic and epigenetic changes that results in oncogenic "hallmarks of cancer" processes including genomic instability. Exploitation of aberrant DNA-damage response (DDR) mechanisms in cancer is in part a goal of many therapeutic strategies, and recent evidence supports the role of targeting DDR in modulating the tumor immune microenvironment to enhance immunotherapeutic response. Improved cancer profiling, including next-generation and whole-genome mutational sequencing of tumor tissue, as well as circulating nucleic acids, has enhanced our understanding of the genetic and epigenetic molecular mechanisms in tumorigenesis and will become fundamental to precisely target tumors and achieve cancer control. With the successes of poly(ADP-ribose) polymerase inhibitors (PARPi) and immunotherapies, the intersection of DDR molecular machinery and corresponding antitumor immune response has gained much interest with a focus on achieving therapeutic synergy using DNA damage-targeting agents and immunotherapy. In this review, we provide a bench-to-bedside overview of the fundamentals of DDR signaling and repair as they relate to cancer therapeutic strategies including novel DDR-targeting agents. We also discuss the underlying mechanisms that link DDR signaling to antitumor immunity and immunotherapy efficacy, and how this knowledge can be used to improve precision medicine approaches in the treatment of cancer.
Collapse
Affiliation(s)
- Curtis A. Clark
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Eddy S. Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
,Hugh Kaul Precision Medicine Institute, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| |
Collapse
|