1
|
Sun Y, Ma L, Zhang X, Wang Z. Advances in the Treatment of Rare Mutations in Non-Small Cell Lung Cancer. Onco Targets Ther 2024; 17:1095-1115. [PMID: 39583247 PMCID: PMC11585992 DOI: 10.2147/ott.s487870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality rate worldwide, with nearly 2.5 million new cases and more than 1.8 million deaths reported globally in 2022. Lung cancer is broadly categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with NSCLC accounting for about 85% of all cases. Early-stage lung cancers often present without obvious symptoms, resulting in most patients being diagnosed at an advanced stage where traditional chemotherapy has limited efficacy. Recent advances in molecular biology have elucidated the pivotal role of gene mutations in tumor development, paving the way for targeted therapies that have markedly benefited patients. Beyond the well-known epidermal growth factor receptor (EGFR) mutation, an increasing number of new molecular targets have been identified, including ROS1 rearrangement, BRAF mutation, NTRK fusion, RET fusion, MET mutation, KRAS G12C mutation, HER2 mutation, ALK rearrangement, and NRG1 fusion. Some of these targeted therapies have already been approved by the Food and Drug Administration (FDA), and many others are currently undergoing clinical trials. This review summarizes recent advances in NSCLC treatment with molecular targets, highlighting progress, challenges, and their impact on patient prognosis.
Collapse
Affiliation(s)
- Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Lee TS, Kim JY, Lee MH, Cho IR, Paik WH, Ryu JK, Kim YT, Lee SH. Savolitinib: A Promising Targeting Agent for Cancer. Cancers (Basel) 2023; 15:4708. [PMID: 37835402 PMCID: PMC10571651 DOI: 10.3390/cancers15194708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Savolitinib is a highly selective small molecule inhibitor of the mesenchymal epithelial transition factor (MET) tyrosine kinase, primarily developed for the treatment of non-small cell lung cancer (NSCLC) with MET mutations. It is also being investigated as a treatment for breast, head and neck, colorectal, gastric, pancreatic, and other gastrointestinal cancers. In both preclinical and clinical studies, it has demonstrated efficacy in lung, kidney, and stomach cancers. Savolitinib is an oral anti-cancer medication taken as a 600 mg dose once daily. It can be used as a monotherapy in patients with non-small cell lung cancer with MET mutations and in combination with epidermal growth factor receptor (EGFR) inhibitors for patients who have developed resistance to them. Furthermore, savolitinib has shown positive results in gastric cancer treatment, particularly in combination with docetaxel. As a result, this review aims to validate its efficacy in NSCLC and suggests its potential application in other gastrointestinal cancers, such as pancreatic cancer, based on related research in gastric and renal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (T.S.L.); (J.Y.K.); (M.H.L.); (I.R.C.); (W.H.P.); (J.K.R.); (Y.-T.K.)
| |
Collapse
|
3
|
Sakamoto M, Patil T. MET alterations in advanced non-small cell lung cancer. Lung Cancer 2023; 178:254-268. [PMID: 36924573 DOI: 10.1016/j.lungcan.2023.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023]
Abstract
Targeting the MET pathway in advanced NSCLC has been of particular interest due to its role as both a primary oncogenic driver and secondary oncogenic driver of acquired resistance. Activation of the MET pathway can occur through several mechanisms, which can complicate the diagnostic and treatment approach. Recently, several MET-directed therapies have been developed with promising results. In this narrative review, we summarize the biology and mechanism of MET as a clinically relevant driver mutation, distinct MET alterations including diagnostic challenges, significance in the setting of acquired resistance, and novel treatment strategies in advanced NSCLC.
Collapse
Affiliation(s)
- Mandy Sakamoto
- Department of Medicine, Division of Medical Oncology, United States
| | - Tejas Patil
- Department of Medicine, Division of Medical Oncology, United States.
| |
Collapse
|
4
|
Huang Y, Zhang L. Annual progress of clinical research on targeted therapy for nonsmall cell lung cancer in 2022. CANCER INNOVATION 2023; 2:25-35. [PMID: 38090373 PMCID: PMC10686144 DOI: 10.1002/cai2.56] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 10/15/2024]
Abstract
With the rapid development of lung cancer molecular detection and precision therapy, targeted therapy has covered the entire process of diagnosis and treatment of nonsmall cell lung cancer patients. Overall mortality from lung cancer has decreased significantly over the past 20 years, especially since the introduction of targeted drugs in 2013. In 2022, targeted therapy for lung cancer has developed rapidly. The optimization of treatment modes and the exploration of new target drugs such as antibody-drug conjugates will broaden the selection range of nonsmall cell lung cancer patients with positive driver genes. This article reviews the latest advances in targeted therapy for driver gene-positive lung cancer in 2022.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| | - Li Zhang
- State Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangzhouP. R. China
| |
Collapse
|
5
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
6
|
Zhu X, Lu Y, Lu S. Landscape of Savolitinib Development for the Treatment of Non-Small Cell Lung Cancer with MET Alteration-A Narrative Review. Cancers (Basel) 2022; 14:cancers14246122. [PMID: 36551608 PMCID: PMC9776447 DOI: 10.3390/cancers14246122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is increasingly being treated with targeted therapies. Savolitinib (Orpathys®) is highly selective mesenchymal epithelial transition (MET)-tyrosine kinase inhibitor (TKI), which is conditionally approved in China for advanced NSCLC with MET exon 14 skipping mutations (METex14). This article summarizes the clinical development of savolitinib, as a monotherapy in NSCLC with METex14 mutation and in combination with epidermal growth factor receptor (EGFR) inhibitor in post EGFR-TKI resistance NSCLC due to MET-based acquired resistance. Preclinical models demonstrated anti-tumor activities in MET-driven cancer cell line and xenograft tumor models. The Phase Ia/Ib study established an optimized, recommended phase II dose in Chinese NSCLC patients, while TATTON study of savolitinib plus osimertinib in patients with EGFR mutant, MET-amplified and TKI-progressed NSCLC showed beneficial efficacy with acceptable safety profile. In a pivotal phase II study, Chinese patients with pulmonary sarcomatoid carcinoma, brain metastasis and other NSCLC subtype positive for METex14 mutation showed notable responses and acceptable safety profile with savolitinib. Currently, results from ongoing clinical trials are eagerly anticipated to confirm the efficacious and safety benefits of savolitinib as monotherapy and in combination with EGFR-TKI in acquired resistance setting in advanced NSCLC and its subtypes with MET alterations.
Collapse
Affiliation(s)
- Xiaokuan Zhu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yao Lu
- AstraZeneca China, Shanghai 201200, China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence:
| |
Collapse
|
7
|
Moiseenko F, Bogdanov A, Egorenkov V, Volkov N, Moiseyenko V. Management and Treatment of Non-small Cell Lung Cancer with MET Alteration and Mechanisms of Resistance. Curr Treat Options Oncol 2022; 23:1664-1698. [PMID: 36269457 DOI: 10.1007/s11864-022-01019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/30/2023]
Abstract
OPINION STATEMENT MET-driven tumors are a heterogenous group of non-small cell lung cancers (NSCLC) with activating mutations. Pathologic activation of MET can be achieved with increased number of gene copies overexpression, or decreased protein degradation through several mechanisms, including mutations, amplifications, or fusions. Besides its role as primary driver, MET activation might also mediate resistance to kinase inhibitors in NSCLC with various other actionable alterations. While checkpoint inhibitors have modest efficacy in MET-driven tumors, several approaches of targeted blockade are available. Among them the most promising are small tyrosine kinase inhibitors, antibody-drug conjugates, and bispecific antibodies. Unfortunately, resistance is virtually inevitable. Resistance to small kinase inhibitors might be mediated by kinase domain mutations or activation of shunting cascades. Various resistance mechanisms might be present in one patient, making it overcoming an unresolved problem.
Collapse
Affiliation(s)
- Fedor Moiseenko
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia. .,N.N. Petrov National Medical Research Center of Oncology, Ministry of Public Health of the Russian Federation, 68, Leningradskaya st., Pesochny, St. Petersburg, 197758, Russia. .,State Budget Institution of Higher Education "North-Western State Medical University named after I.I Mechnikov" under the Ministry of Public Health of the Russian Federation, 41, Kirochnaya str, Saint Petersburg, 191015, Russia.
| | - Alexey Bogdanov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Vitaliy Egorenkov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Nikita Volkov
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| | - Vladimir Moiseyenko
- Saint-Petersburg City Cancer Center, Leningradskay 68a, Lit.A, Pesochny, St. Petersburg, 197758, Russia
| |
Collapse
|
8
|
Ahn MJ, Mendoza MJL, Pavlakis N, Kato T, Soo RA, Kim DW, Liam CK, Hsia TC, Lee CK, Reungwetwattana T, Geater S, Chan OSH, Prasongsook N, Solomon BJ, Nguyen TTH, Kozuki T, Yang JCH, Wu YL, Mok TSK, Tan DSW, Yatabe Y. Asian Thoracic Oncology Research Group (ATORG) Expert Consensus Statement on MET Alterations in NSCLC: Diagnostic and Therapeutic Considerations. Clin Lung Cancer 2022; 23:670-685. [PMID: 36151006 DOI: 10.1016/j.cllc.2022.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a heterogeneous disease, with many oncogenic driver mutations, including de novo mutations in the Mesenchymal Epithelial Transition (MET) gene (specifically in Exon 14 [ex14]), that lead to tumourigenesis. Acquired alterations in the MET gene, specifically MET amplification is also associated with the development of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) resistance in patients with EGFR-mutant NSCLC. Although MET has become an actionable biomarker with the availability of MET-specific inhibitors in selected countries, there is differential accessibility to diagnostic platforms and targeted therapies across countries in Asia-Pacific (APAC). The Asian Thoracic Oncology Research Group (ATORG), an interdisciplinary group of experts from Australia, Hong Kong, Japan, Korea, Mainland China, Malaysia, the Philippines, Singapore, Taiwan, Thailand and Vietnam, discussed testing for MET alterations and considerations for using MET-specific inhibitors at a consensus meeting in January 2022, and in subsequent offline consultation. Consensus recommendations are provided by the ATORG group to address the unmet need for standardised approaches to diagnosing MET alterations in NSCLC and for using these therapies. MET inhibitors may be considered for first-line or second or subsequent lines of treatment for patients with advanced and metastatic NSCLC harbouring MET ex14 skipping mutations; MET ex14 testing is preferred within multi-gene panels for detecting targetable driver mutations in NSCLC. For patients with EGFR-mutant NSCLC and MET amplification leading to EGFR TKI resistance, enrolment in combination trials of EGFR TKIs and MET inhibitors is encouraged.
Collapse
Affiliation(s)
- Myung-Ju Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | - Nick Pavlakis
- Department of Medical Oncology, Royal North Shore Hospital, University of Sydney, Sydney, NSW, Australia
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute Singapore, Singapore
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Chong Kin Liam
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chee Khoon Lee
- National Health and Medical Research Council Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sarayut Geater
- Division of Internal Medicine, Faculty of Medicine, Songklanagarind Hospital, Prince of Songkla University, Songkhla, Thailand
| | - Oscar Siu Hong Chan
- Department of Clinical Oncology, Hong Kong Integrated Oncology Centre, Hong Kong SAR, China
| | - Naiyarat Prasongsook
- Division of Medical Oncology, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Toshiyuki Kozuki
- Department of Thoracic Oncology and Medicine, National Hospital Organization Shikoku Cancer Center, Matsuyama, Ehime, Japan
| | - James Chih-Hsin Yang
- Department of Medical Oncology, National Taiwan University Cancer Center and National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tony Shu Kam Mok
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Remon J, Hendriks LE, Mountzios G, García-Campelo R, Saw SP, Uprety D, Recondo G, Villacampa G, Reck M. MET alterations in NSCLC—Current Perspectives and Future Challenges. J Thorac Oncol 2022; 18:419-435. [PMID: 36441095 DOI: 10.1016/j.jtho.2022.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022]
Abstract
Targeted therapies have revolutionized the treatment and improved the outcome for oncogene-driven NSCLC and an increasing number of oncogenic driver therapies have become available. For MET-dysregulated NSCLC (especially MET exon 14 skipping mutations and MET-amplifications, which is one of the most common bypass mechanisms of resistance in oncogene-addicted NSCLC), several anti-MET-targeted therapies have been approved recently (MET exon 14 skipping mutation) and multiple others are in development. In this narrative review, we summarize the role of MET as an oncogenic driver in NSCLC, discuss the different testing methods for exon 14 skipping mutations, gene amplification, and protein overexpression, and review the existing data and ongoing clinical trials regarding targeted therapies in MET-altered NSCLC. As immunotherapy with or without chemotherapy has become the standard of care for advanced NSCLC, immunotherapy data for MET-dysregulated NSCLC are put into perspective. Finally, we discuss future challenges in this rapidly evolving landscape.
Collapse
|
10
|
Brazel D, Zhang S, Nagasaka M. Spotlight on Tepotinib and Capmatinib for Non-Small Cell Lung Cancer with MET Exon 14 Skipping Mutation. LUNG CANCER (AUCKLAND, N.Z.) 2022; 13:33-45. [PMID: 35592355 PMCID: PMC9113513 DOI: 10.2147/lctt.s360574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023]
Abstract
Mesenchymal-epithelial transition (MET) receptor tyrosine kinase is overexpressed, amplified, or mutated in 1-20% of NSCLC. MET dysregulation is associated with a poor prognosis. Recently, development of targeted therapies against MET exon 14 mutations has demonstrated efficacy and tolerability in early trials. Here we focus on tepotinib and capmatinib in regards to molecular characteristics, early preclinical and clinical data, and the emerging role in future studies and clinical practice.
Collapse
Affiliation(s)
- Danielle Brazel
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Shannon Zhang
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
| | - Misako Nagasaka
- Department of Medicine, University of California Irvine School of Medicine, Orange, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
- Department of Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
11
|
Arora S, Asawa P, Kataria N, Hendriks LEL, Desai AP. Management of Non-Small Cell Lung Cancer: Updates from the European Lung Cancer Congress 2022. Cancer Invest 2022; 40:577-589. [PMID: 35561313 DOI: 10.1080/07357907.2022.2077566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The recently concluded European Lung Cancer Congress 2022 (ELCC22) showcased some very exciting data, with more than 200 abstracts presented during the meeting. Through this review, we focus on selected clinically relevant abstracts that in our opinion represent significant updates in the current management of non-small cell lung cancer (NSCLC). Here, we summarize the updates in surgical management, adjuvant therapy and therapy for advanced stage NSCLC and put these advances in context of current clinical standard of care.
Collapse
Affiliation(s)
- Sankalp Arora
- Department of Internal Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Palash Asawa
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Nilansh Kataria
- Department of Medicine, Armed Forces Medical College, Pune, Maharashtra, India
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Aakash P Desai
- Division of Medical Oncology, MayoClinic, Rochester, Minnesota, USA
| |
Collapse
|