1
|
Hu Y, Zhao Y, Zhang Y, Chen W, Zhang H, Jin X. Cell-free DNA: a promising biomarker in infectious diseases. Trends Microbiol 2024:S0966-842X(24)00168-9. [PMID: 38997867 DOI: 10.1016/j.tim.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/08/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Infectious diseases pose serious threats to public health worldwide. Conventional diagnostic methods for infectious diseases often exhibit low sensitivity, invasiveness, and long turnaround times. User-friendly point-of-care tests are urgently needed for early diagnosis, treatment monitoring, and prognostic prediction of infectious diseases. Cell-free DNA (cfDNA), a promising non-invasive biomarker widely used in oncology and pregnancy, has shown great potential in clinical applications for diagnosing infectious diseases. Here, we discuss the most recent cfDNA research on infectious diseases from both the pathogen and host perspectives. We also discuss the technical challenges in this field and propose solutions to overcome them. Additionally, we provide an outlook on the potential of cfDNA as a diagnostic, treatment, and prognostic marker for infectious diseases.
Collapse
Affiliation(s)
- Yuxuan Hu
- BGI Research, Shenzhen 518083, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | | | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Weijun Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; PathoGenesis, BGI Genomics, Shenzhen 518083, China
| | | | - Xin Jin
- BGI Research, Shenzhen 518083, China; The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; Shenzhen Key Laboratory of Transomics Biotechnologies, BGI Research, Shenzhen, China.
| |
Collapse
|
2
|
Jiang T, Sun H, Xu T, Xue S, Xia W, Xiao X, Wang Y, Guo L, Lin H. Significance of Pre-Treatment CALLY Score Combined with EBV-DNA Levels for Prognostication in Non-Metastatic Nasopharyngeal Cancer Patients: A Clinical Perspective. J Inflamm Res 2024; 17:3353-3369. [PMID: 38803689 PMCID: PMC11129745 DOI: 10.2147/jir.s460109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Background The C-reactive protein-albumin-lymphocyte (CALLY) score is a novel indicator associated with inflammation, immunity, and nutrition, utilized for cancer prognostic stratification. This study aimed to evaluate the integrated prognostic significance of the pre-treatment CALLY score and Epstein-Barr virus (EBV) DNA levels in nasopharyngeal carcinoma (NPC) patients and to develop prognostic models. Patients and Methods A total of 1707 NPC patients from September 2015 to December 2017 were retrospectively enrolled. The cut-off point for the CALLY score, determined by maximum selected rank statistics, integrates with the published cut-off point for pre-EBV DNA to develop a comprehensive index. Subsequently, patients were randomly allocated in a 1:1 ratio into training and validation cohorts. Survival analysis was conducted using the Kaplan-Meier method with Log rank tests, and the Cox proportional hazards model was applied to identify independent prognostic factors for constructing predictive nomograms. The predictive ability of the nomograms were assessed through the concordance index (C-index), calibration curves, and decision curve analysis. Results By integrating CALLY scores and EBV-DNA levels, patients were categorized into three risk clusters. Kaplan-Meier curves reveal significant differences in overall survival (OS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRRFS) outcomes among different risk groups (all P values < 0.05). Multivariate analysis revealed that CALLY-EBV DNA index serves as an independent prognostic factor for the OS, DMFS, and LRRFS. The prognostic nomograms based on the CALLY-EBV DNA index provided accurate predictions for 1-year, 3-year, and 5-year OS, DMFS, and LRRFS. Additionally, compared to the traditional TNM staging system, the nomograms exhibited enhanced discriminatory power, calibration capability, and clinical applicability. All results were in agreement with the validation cohort. Conclusion The CALLY-EBV DNA index is an independent prognostic biomarker. The nomogram prediction models, constructed based on the CALLY-EBV DNA index, demonstrates superior predictive performance compared to the traditional TNM staging.
Collapse
Affiliation(s)
- Tongchao Jiang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Haishuang Sun
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Tiankai Xu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Shuyu Xue
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Wen Xia
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Xiang Xiao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Ying Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| | - Huanxin Lin
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People’s Republic of China
| |
Collapse
|
3
|
Chan KKP, Lee YCG. Tuberculous pleuritis: clinical presentations and diagnostic challenges. Curr Opin Pulm Med 2024; 30:210-216. [PMID: 38323466 PMCID: PMC10990028 DOI: 10.1097/mcp.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW Tuberculous pleuritis (TBP) is one of the most common types of extrapulmonary tuberculosis. We highlight the latest epidemiology of TBP, the heterogeneity of its presentation and the performance of different diagnostic strategies. RECENT FINDINGS There are differential trends in the incidences of TBP worldwide. Its incidence increased in China but decreased in the United States in the past decade. The presentation of TBP is heterogeneous regarding clinical symptoms, radiological findings and pleural fluid analysis results. Conventional microbiological tests have low sensitivities to diagnose TBP. Recent research focused on various diagnostic tools with better yield. The sensitivity of nucleic acid amplification tests (NAAT) in pleural fluid, including the latest generation of PCR and sequencing-based techniques for detecting tuberculosis, remains suboptimal. Various pleural fluid biomarkers have been explored, but there is a lack of consensus on their clinical utility and cutoff levels. SUMMARY The heterogeneity of clinical presentation poses obstacles to diagnosing TBP. Further development of diagnostic tools, including more robust NAAT and biomarkers with additional validation, is needed before incorporation into routine clinical practice.
Collapse
Affiliation(s)
- Ken Ka Pang Chan
- Department of Medicine & Therapeutics, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Yun Chor Gary Lee
- Institute for Respiratory Health and Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Shannon NB, Iyer NG. Unveiling Liquid Gold: Lymph as an HPV Marker in OPSCC to Guide Treatment Decisions. Clin Cancer Res 2024; 30:1223-1225. [PMID: 38252056 DOI: 10.1158/1078-0432.ccr-23-3549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
Distinguishing low- versus high-risk HPV-associated oropharyngeal squamous cell carcinoma (OPSCC) is pivotal for tailoring treatment. Liquid biopsy, measuring cell-free HPV-DNA in serum and saliva, assesses treatment response and early-recurrence risk. Postoperative lymphatic fluid may better guide future adjuvant therapy decisions due to its proximity to primary lesions and lymph nodes. See related article by Earland et al., p. 1409.
Collapse
Affiliation(s)
- Nicholas B Shannon
- Department of Head and Neck Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore
- Duke-NUS Medical School, Singapore
| | - N Gopalakrishna Iyer
- Department of Head and Neck Surgery, Singapore General Hospital and National Cancer Centre Singapore, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
5
|
Cao X, Huang HY, Liang CX, Lin ZC, Zhou JY, Chen X, Huang YY, Zhan ZJ, Ke LR, Han LJ, Xia WX, Tang LQ, Guo SS, Liang H, Guo X, Lv X. Toripalimab plus capecitabine in the treatment of patients with residual nasopharyngeal carcinoma: a single-arm phase 2 trial. Nat Commun 2024; 15:949. [PMID: 38297016 PMCID: PMC10831082 DOI: 10.1038/s41467-024-45276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Patients with residual nasopharyngeal carcinoma after receiving definitive treatment have poor prognoses. Although immune checkpoint therapies have achieved breakthroughs for treating recurrent and metastatic nasopharyngeal carcinoma, none of these strategies have been assessed for treating residual nasopharyngeal carcinoma. In this single-arm, phase 2 trial, we aimed to evaluate the antitumor efficacy and safety of toripalimab (anti-PD1 antibody) plus capecitabine in patients with residual nasopharyngeal carcinoma after definitive treatment (ChiCTR1900023710). Primary endpoint of this trial was the objective response rate assessed according to RECIST (version 1.1). Secondary endpoints included complete response rate, disease control rate, duration of response, progression-free survival, safety profile, and treatment compliance. Between June 1, 2020, and May 31, 2021, 23 patients were recruited and received six cycles of toripalimab plus capecitabine every 3 weeks. In efficacy analyses, 13 patients (56.5%) had complete response, and 9 patients (39.1%) had partial response, with an objective response rate of 95.7% (95% CI 78.1-99.9). The trial met its prespecified primary endpoint. In safety analyses, 21 of (91.3%) 23 patients had treatment-related adverse events. The most frequently reported adverse event was hand-foot syndrome (11 patients [47.8%]). The most common grade 3 adverse event was hand-foot syndrome (two patients [8.7%]). No grades 4-5 treatment-related adverse events were recorded. This phase 2 trial shows that combining toripalimab with capecitabine has promising antitumour activity and a manageable safety profile for patients with residual nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Xun Cao
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- Department of Critical Care Medicine, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Hao-Yang Huang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Chi-Xiong Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Zhuo-Chen Lin
- Department of Medical Records, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-Yu Zhou
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Xi Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ying-Ying Huang
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
- Department of Medical Imaging, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Ze-Jiang Zhan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Liang-Ru Ke
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
- Department of Medical Imaging, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lu-Jun Han
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
- Department of Medical Imaging, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Wei-Xiong Xia
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Lin-Quan Tang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Shan-Shan Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Hu Liang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Xiang Guo
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China
| | - Xing Lv
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Centre, Guangzhou, China.
- State Key Laboratory of Oncology in South China/Collaborative Innovation Centre for Cancer Medicine/Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy/Guangdong Provincial Clinical Research Centre for Cancer, Sun Yat-sen University Cancer Centre, Guangzhou, China.
| |
Collapse
|
6
|
Jacky Lam WK, Kang G, Winsome Wong WS. Circulating tumour DNA for detection of minimal residual disease in head and neck squamous cell carcinoma: A new hope. Ann Oncol 2023; 34:1080-1081. [PMID: 38072511 DOI: 10.1016/j.annonc.2023.10.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 12/18/2023] Open
Affiliation(s)
- W K Jacky Lam
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Guannan Kang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - W S Winsome Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
7
|
Paolini F, Campo F, Iocca O, Manciocco V, De Virgilio A, De Pascale V, Moretto S, Dalfino G, Vidiri A, Blandino G, Pimpinelli F, Venuti A, Pellini R. It is time to improve the diagnostic workup of oropharyngeal cancer with circulating tumor HPV DNA: Systematic review and meta-analysis. Head Neck 2023; 45:2945-2954. [PMID: 37715656 DOI: 10.1002/hed.27515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023] Open
Abstract
The possibility of detecting circulating tumor HPV DNA (ctHPVDNA) in plasma in patients with oropharyngeal cancer has been demonstrated in several reports. However, these data are from small cohorts and available tests for detection of ctHPVDNA are not fully validated. The aim is to evaluate sensitivity, specificity, and accuracy of ctHPVDNA by ddPCR to define its efficacy in the clinical setting for the diagnosis of HPV + OPSCC. A comprehensive search of three different databases: MEDLINE, Embase, and Cochrane Library databases. A total of 998 patients were evaluated from the 13 studies. OPSSC p16+ were 729, while controls p16- were 269. The meta-analytic study estimated the diagnostic performance of ctHPVDNA as follows: pooled sensitivity and specificity of 0.90 (95% CI: 0.82-0.94) and 0.94 (95% CI: 0.85-0.98), respectively; positive and negative likelihood ratios of 12.6 (95% CI: 4.9-32.1) and 0.05 (95% CI: 0.02-0.13), respectively. ddPCR for ctHPVDNA has good accuracy, sensitivity, and specificity for diagnosis of HPV + OPSCC. ctHPVDNA kinetic represents a great reliable opportunity to improve diagnostic and therapeutic management of cancer patients and could open new perspectives for understanding tumor biology.
Collapse
Affiliation(s)
- Francesca Paolini
- HPV-Unit, UOSD Tumor Immunology and Immunotherapy IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
- Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Flaminia Campo
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Oreste Iocca
- Division of Maxillofacial Surgery, Surgical Science Department, University of Torino, Torino, Italy
| | - Valentina Manciocco
- HPV-Unit, UOSD Tumor Immunology and Immunotherapy IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Armando De Virgilio
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Valentina De Pascale
- Translational oncologic research, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Silvia Moretto
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Gianluca Dalfino
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Antonello Vidiri
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Fulvia Pimpinelli
- Department of Microbiology and Virology, IRCCS San Gallicano Dermatological Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Aldo Venuti
- HPV-Unit, UOSD Tumor Immunology and Immunotherapy IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Raul Pellini
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| |
Collapse
|
8
|
Ding T, Zhang Y, Ren Z, Cong Y, Long J, Peng M, Faleti OD, Yang Y, Li X, Lyu X. EBV-Associated Hub Genes as Potential Biomarkers for Predicting the Prognosis of Nasopharyngeal Carcinoma. Viruses 2023; 15:1915. [PMID: 37766321 PMCID: PMC10537168 DOI: 10.3390/v15091915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to develop a model using Epstein-Barr virus (EBV)-associated hub genes in order to predict the prognosis of nasopharyngeal carcinoma (NPC). Differential expression analysis, univariate regression analysis, and machine learning were performed in three microarray datasets (GSE2371, GSE12452, and GSE102349) collected from the GEO database. Three hundred and sixty-six EBV-DEGs were identified, 25 of which were found to be significantly associated with NPC prognosis. These 25 genes were used to classify NPC into two subtypes, and six genes (C16orf54, CD27, CD53, CRIP1, RARRES3, and TBC1D10C) were found to be hub genes in NPC related to immune infiltration and cell cycle regulation. It was shown that these genes could be used to predict the prognosis of NPC, with functions related to tumor proliferation and immune infiltration, making them potential therapeutic targets. The findings of this study could aid in the development of screening and prognostic methods for NPC based on EBV-related features.
Collapse
Affiliation(s)
- Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Zhixuan Ren
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China;
| | - Ying Cong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Jingyi Long
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Manli Peng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Oluwasijibomi Damola Faleti
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- Department of Urology, Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Xiaoming Lyu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
9
|
Scholte LL, Bethony JM, Xian RR. Diagnosis and monitoring of virus-associated cancer using cell-free DNA. Curr Opin Virol 2023; 60:101331. [PMID: 37187125 PMCID: PMC11411455 DOI: 10.1016/j.coviro.2023.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Viral-associated cancers are a distinct group of malignancies with a unique pathogenesis and epidemiology. Liquid biopsy is a minimally invasive way to identify tumor-associated abnormalities in blood derivatives, such as plasma, to guide the diagnosis, prognosis, and treatment of patients with cancer. Liquid biopsy encompasses a multitude of circulating analytes with the most extensively studied being cell-free DNA (cfDNA). In recent decades, substantial advances have been made toward the study of circulating tumor DNA in nonviral-associated cancers. Many of these observations have been translated to the clinic to improve the outcomes of patients with cancer. The study of cfDNA in viral-associated cancers is rapidly evolving and reveals tremendous potential for clinical applications. This review provides an overview of the pathogenesis of viral-associated malignancies, the current state of cfDNA analysis in oncology, the current state of cfDNA analysis in viral-associated cancers, and perspectives for the future of liquid biopsies in viral-associated cancers.
Collapse
Affiliation(s)
- Larissa Ls Scholte
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, United States
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, United States
| | - Rena R Xian
- Department of Pathology and Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
10
|
Tinhofer I, Staudte S, George S. Liquid biopsy in head neck cancer: ready for clinical routine diagnostics? Curr Opin Oncol 2023; 35:151-157. [PMID: 36966499 DOI: 10.1097/cco.0000000000000935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
PURPOSE OF REVIEW The bodily fluids of patients with solid cancers representing a minimally-invasive source of clinically exploitable biomarkers have attracted an increasing amount of attention in recent years. In patients with head and neck squamous cell carcinoma (HNSCC), cell-free tumour DNA (ctDNA) belongs to the most promising liquid biomarkers for monitoring disease burden and identifying patients at high risk of recurrence. In this review, we highlight recent studies, evaluating the analytical validity and clinical utility of ctDNA as a dynamic biomarker in HNSCC, especially as it relates to risk stratification and contrasting human papilloma virus (HPV+ and HPV-) and carcinomas. RECENT FINDINGS The clinical potential of minimal residual disease monitoring through viral ctDNA in identifying HPV+ oropharyngeal carcinoma patients at higher risk of recurrence has recently been demonstrated. Furthermore, accumulating evidence supports a potential diagnostic value of ctDNA dynamics in HPV-negative HNSCC. Altogether, recent data suggest that ctDNA analysis may be a valuable tool in guiding (de)escalation of surgical interventions as well as adaptation in radiotherapy dosage, both in the definitive and adjuvant settings. SUMMARY Rigorous clinical trials with patient-relevant endpoints are critical in order to demonstrate that treatment decisions based on ctDNA dynamics result in better outcomes in HNSCC.
Collapse
Affiliation(s)
- Ingeborg Tinhofer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site Berlin, Germany
| | - Stephanie Staudte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site Berlin, Germany
| | - Stephen George
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Radiooncology and Radiotherapy
- German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK) partner site Berlin, Germany
| |
Collapse
|
11
|
Clinical relevance of plasma EBV DNA as a biomarker for nasopharyngeal carcinoma in non-endemic areas: A multicenter study in southwestern China. Clin Chim Acta 2023; 541:117244. [PMID: 36746264 DOI: 10.1016/j.cca.2023.117244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Numerous clinical studies have validated plasma EBV DNA as a reliable biomarker for nasopharyngeal carcinoma (NPC) screening, tumor load monitoring, and prognosis prediction in endemic regions. However, the clinical relevance of plasma EBV DNA as a biomarker for NPC in non-endemic areas is still unclear. METHOD The pretreatment plasma EBV DNA of 1405 newly diagnosed NPC patients from three major regional hospitals in non-endemic areas were analyzed retrospectively. The medical records of 244 age- and gender-matched healthy individuals were reviewed. EBV DNA was detected using Polymerase Chain Reaction (PCR). Based on the baseline of 400 and 0 copies/mL, the distribution characteristics of the pretreatment EBV DNA load in different clinical stages and geographic regions were analyzed. The diagnostic value of pretreatment plasma EBV DNA for NPC with two baselines was evaluated using the ROC curve. RESULTS NPC patients had a significantly higher pretreatment EBV DNA level than healthy controls (P<0.001). Pretreatment EBV DNA was closely associated with clinical and TNM stages in non-endemic areas, as it was in endemic areas. However, when 400 copies/mL set as the detection baseline, the sensitivity and specificity for NPC diagnosis were 40.8 % and 100 %, respectively (AUC = 0.704, cut off = 200.5 copies/mL). This sensitivity was lower than that reported in endemic regions (41.5 % - 97.1 %). Lower sensitivity may result in false negatives, missing diagnoses during NPC screening. Further investigation revealed that 39.7 % (558/1405) of NPC patients had detectable EBV DNA and S amplification curves. Optimizing the detection limit to 0 copies/mL, the sensitivity could be improved to 80.5 % (AUC = 0.901). CONCLUSIONS In non-endemic areas, the clinical significance of plasma EBV DNA as a biomarker for NPC was restricted due to the low detection limit of 400 copies/mL. More efficient nucleic acid extraction and detection methods are needed to optimize the detection limit and increase the clinical application of plasma EBV DNA for NPC.
Collapse
|
12
|
Xu X, Wei F, Xiao L, Wu R, Wei B, Huang S, Yi J, Cui W. High proportion of circulating CD8 + CD28- senescent T cells is an independent predictor of distant metastasis in nasopharyngeal canrcinoma after radiotherapy. J Transl Med 2023; 21:64. [PMID: 36721233 PMCID: PMC9887944 DOI: 10.1186/s12967-023-03912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a kind of epithelial carcinoma that is common in East and Southeast Asia. Distant metastasis after radiotherapy remains the main cause of treatment failure and preradiotherapy immune system function can influence prognosis. Our study aimed to identify immune-related prognostic factors for NPC after radiotherapy and establish a prognostic model to predict progression-free survival (PFS) and distant metastasis-free survival (DMFS). METHODS We enrolled NPC patients and divided them into training and validation cohorts with follow-up. We collected clinical information and investigated immune cells, EBV DNA and cytokines in the peripheral blood of NPC patients before radiotherapy and EBV DNA after radiotherapy. Among these immune cells, we included CD8+CD28- T cells, which are a unique T-cell immunosenescent subset that increases in human peripheral blood with increasing age and declining immune function. Based on the detection results and clinical information, we utilized Cox regression and least absolute shrinkage and selection operator (LASSO) regression to screen the PFS and DMFS prognostic factors and build nomograms to predict the PFS and DMFS of NPC. We also verified the results in the validation set. RESULTS Three factors associated with PFS were selected: proportion of CD8+CD28- T cells posttreatment EBV and N stage. Three factors associated with DMFS were screened: proportion of CD8+CD28- T cells, posttreatment EBV and N stage. CD8+CD28- T cells are correlated with systemic inflammation and posttreatment immunosuppression. The C-indexes were 0.735 and 0.745 in the training and validation cohorts for predicting PFS. For DMFS, the C-indexes were 0.793 and 0.774 in the training and validation cohorts. CONCLUSIONS The pretreatment proportion of CD8+CD28- T cells is a candidate prognostic biomarker for NPC after radiotherapy. The constructed nomogram models based on CD8+CD28- T cells have good predictive value.
Collapse
Affiliation(s)
- Xiaotian Xu
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Fangze Wei
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Lin Xiao
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Runye Wu
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Baojun Wei
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Shengkai Huang
- grid.506261.60000 0001 0706 7839Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Junlin Yi
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wei Cui
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
13
|
Gihbid A, Benzeid R, Faouzi A, El Alami I, Tawfiq N, Benchakroun N, Bendahhou K, Benider A, Guensi A, Khaali W, Chaoui I, El Mzibri M, Cadi R, Khyatti M. The Dynamic Change in Plasma Epstein-Barr Virus DNA Load over a Long-Term Follow-Up Period Predicts Prognosis in Nasopharyngeal Carcinoma. Viruses 2022; 15:66. [PMID: 36680107 PMCID: PMC9865665 DOI: 10.3390/v15010066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The current study was designed to investigate the changes in the circulating Epstein−Barr virus DNA load (EBV DNA) at various time points before and after treatment and its clinical significance in nasopharyngeal carcinoma (NPC). A total of 142 patients with NPC were prospectively enrolled in this study. The plasma EBV DNA concentration was measured before and after treatment using qPCR. The prognostic values of the EBV DNA load were analyzed using the Kaplan−Meier and Cox regression tests. Following multivariate analysis, our data showed that high pre-EBV DNA loads were associated with significantly poorer distant metastasis free survival (DMFS) and progression free survival (PFS); detectable end-EBV DNA loads were associated with significantly worse loco-regional recurrence free survival (LRRFS) and PFS, and the detecTable 6 months-post-EBV DNA loads were associated with significantly poorer overall survival (OS), DMFS and PFS (p < 0.05). Additionally, combining the pre-EBV DNA load and the stage of the disease, our results showed that patients at stage III-IVA with a low pre-EBV DNA load had similar survival rates as patients at stage II with a low or high pre-EBV DNA load, but had better survival rates than those at stage III-IVA with a high pre-EBV DNA load. Taken together, we showed that the change of the EBV DNA load measured at several time points was more valuable than at any single time point for predicting patients’ survival for NPC. Furthermore, combining the pre-EBV DNA load and the TNM classification could help to formulate an improved prognostic model for this cancer.
Collapse
Affiliation(s)
- Amina Gihbid
- Laboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca 20360, Morocco
- Laboratory of Pathophysiology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco
| | - Raja Benzeid
- Biology and Medical Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat 10000, Morocco
| | - Abdellah Faouzi
- Laboratory of Medical Virology & BSL-3, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Imane El Alami
- Laboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Nezha Tawfiq
- Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital, Casablanca 20100, Morocco
| | - Nadia Benchakroun
- Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital, Casablanca 20100, Morocco
| | - Karima Bendahhou
- Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital, Casablanca 20100, Morocco
| | - Abdellatif Benider
- Mohammed VI Center for Cancer Treatment, Ibn Rochd University Hospital, Casablanca 20100, Morocco
| | - Amal Guensi
- Nuclear Medicine Department, Ibn Rochd University Hospital, Hassan II University, Casablanca 10001, Morocco
| | - Wafa Khaali
- Laboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| | - Imane Chaoui
- Biology and Medical Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat 10000, Morocco
| | - Mohammed El Mzibri
- Biology and Medical Research Unit, National Center of Energy, Sciences and Nuclear Techniques, Rabat 10000, Morocco
| | - Rachida Cadi
- Laboratory of Pathophysiology, Molecular Genetics and Biotechnology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca 20100, Morocco
| | - Meriem Khyatti
- Laboratory of Viral Oncology, Institut Pasteur du Maroc, Casablanca 20360, Morocco
| |
Collapse
|
14
|
Hu X, Ding SC, Jiang P. Emerging frontiers of cell-free DNA fragmentomics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:380-392. [PMID: 39697357 PMCID: PMC11648524 DOI: 10.20517/evcna.2022.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/20/2024]
Abstract
Analysis of cell-free DNA (cfDNA) in the blood has shown promise for monitoring a variety of biological processes. Plasma cfDNA is a mixture comprising DNA molecules released from various bodily tissues, mediated by characteristic DNA fragmentations occurring during cell death. Fragmentation of cfDNA is non-random and contains tissue-of-origin information, which has been demonstrated in circulating fetal, tumoral, and transplanted organ-derived cfDNA molecules. Many studies have elucidated a plurality of fragmentomic markers for noninvasive prenatal, cancer, and organ transplantation assessment, such as fragment sizes, fragment ends, end motifs, and nucleosome footprints. Recently, researchers have further revealed the large population of previously unidentified long cfDNA molecules (kilobases in size) in the plasma DNA pool. This review focuses on the emerging biological properties of cfDNA, together with a discussion on its potential clinical implications.
Collapse
Affiliation(s)
- Xi Hu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Spencer C. Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China
- Li Ka Shing Institute of Health Sciences and Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
15
|
Che H, Stanley K, Jatsenko T, Thienpont B, Vermeesch JR. Expanded knowledge of cell-free DNA biology: potential to broaden the clinical utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:216-234. [PMID: 39697489 PMCID: PMC11648412 DOI: 10.20517/evcna.2022.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/20/2024]
Abstract
Noninvasive sampling of an individual's body fluids is an easy means to capture circulating cell-free DNA (cfDNA). These small fragments of DNA carry information on the contributing cell's genome, epigenome, and nuclease content. Analysis of cfDNA for the assessment of genetic risk has already revolutionized clinical practice, and a compendium of increasingly higher-resolution approaches based on epigenetic and fragmentomic cfDNA signatures continues to expand. Profiling cfDNA has unlocked a wealth of molecular information that can be translated to the clinic. This review covers the biological characteristics of cfDNA, recent advances in liquid biopsy and the clinical utility of cfDNA.
Collapse
Affiliation(s)
- Huiwen Che
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Kate Stanley
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Tatjana Jatsenko
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
16
|
Chow JCH, Lee AWM, Wong CHL, Ng WT, Liu Z, Tay JK, Loh KS, Pace-Asciak P, Cohen O, Corry J, Rodrigo JP, Tsang RKY, Lopez F, Saba NF, de Bree R, Ferlito A. Epstein-Barr virus directed screening for nasopharyngeal carcinoma in individuals with positive family history: A systematic review. Oral Oncol 2022; 133:106031. [PMID: 35908365 DOI: 10.1016/j.oraloncology.2022.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
OBJECTIVES Evidence to support Epstein-Barr virus (EBV)-directed population nasopharyngeal carcinoma (NPC) screening has been growing. Familial aggregation is a well-recognized phenomenon in endemic regions. This systematic review summarizes the role of EBV-directed screening in individuals with a positive family history (FH+) of NPC. METHODS We searched four electronic databases from their inception to October 2021. We included studies on individuals with FH+ of NPC who had undergone EBV-directed investigations, with no restriction in the testing methods or analytic techniques. The primary and secondary outcomes were EBV positivity rates and NPC incidence rates, respectively. Meta-analyses were performed using the random-effect model. RESULTS Ten cross-sectional studies (n = 7436) and three cohort studies (n = 4306) were included. The pooled relative risk (RR) of EBV positivity between individuals with and without FH+ of NPC were 2.79 (95 % CI 1.37-5.68, p = 0.005) for viral capsid antigen (VCA) IgA, 3.09 (95 % CI 0.65-14.83, p = 0.16) for Epstein-Barr nuclear antigen (EBNA1) IgA, and 1.76 (95 % CI 1.04-2.96, p = 0.03) for combined EBNA1/VCA IgA. In the three cohort studies, the NPC incidence rates ranged from 90.2 to 266 per 100 000 person-years with high proportions of early-stage diseases. FH+ individuals who were EBV-positive had a 2.5 to 30.7-fold risk of NPC development compared to their EBV-negative counterparts. CONCLUSION Family members of NPC patients had significantly higher EBV positivity rates than the general population. FH+ individuals who are EBV-positive had high risks of developing NPC. Familial screening using EBV serology may facilitate early NPC detection in endemic areas.
Collapse
Affiliation(s)
- James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Anne W M Lee
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Charlene H L Wong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Wai Tong Ng
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Joshua K Tay
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore
| | - Pia Pace-Asciak
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Oded Cohen
- Department of Surgery, Division of Otolaryngology, Yale University School of Medicine, New Haven, CT, United States
| | - June Corry
- Division of Medicine, Department of Radiation Oncology, St. Vincent's Hospital, The University of Melbourne, 14 Melbourne, Victoria, Australia
| | - Juan Pablo Rodrigo
- Department of Otorhinolaryngology - Head and Neck Surgery, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Raymond K Y Tsang
- Division of Otorhinolaryngology, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fernando Lopez
- Department of Otolaryngology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alfio Ferlito
- International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
17
|
Economopoulou P, Lianidou E, Psyrri A. Epstein-Barr Virus DNA detection by targeted sequencing in post-treatment Plasma Samples and Prognosis of Locally Advanced Nasopharyngeal Cancer: Implications for Clinical Research. Ann Oncol 2022; 33:747-749. [DOI: 10.1016/j.annonc.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022] Open
|