1
|
Cao M, Zeng Y, Liu X, Liu Y, Chen C, Guo L, Zheng H, Shen H, Yao Y, Zhang J, Yu Z. Development of Stable and Intensified Mixing Processes for the Precise and Scalable Production of Uniform Drug Delivery Nanocarriers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406521. [PMID: 39468800 DOI: 10.1002/smll.202406521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Nanocarriers show great promise in drug delivery but face challenges in stability, uniformity, and morphology control. This work introduces an enhanced mixing process to overcome these obstacles, specifically aiming to produce consistently sized poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with anti-tumor drugs. By innovatively integrating a pulsation dampener into the microfluidic channels of a continuous flow preparation system, the flow stability of piston pumps is improved nearly tenfold. Consequently, large-scale production of uniformly sized nanoparticles with customizable dimensions is achieved through nanoprecipitation. Furthermore, incorporating terminal double-bond-functionalized poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)-maleimide (PLGA-PEG-Mal) enables these nanoparticles to act as nano-crosslinkers. This facilitates in situ crosslinking with thiolated hyaluronic acid via a spontaneous thiol-ene coupling reaction under physiological conditions, allowing for minimally invasive drug administration and significantly enhancing localized drug retention. The material's degradability in the presence of endogenous enzymes ensures controlled drug release, as demonstrated with the anti-tumor drug doxorubicin (DOX). Validation in a murine breast cancer model shows reduced toxicity and a substantial reduction in tumor weight compared to the free DOX group. These findings confirm the approach's effectiveness for breast cancer treatment and pave the way for innovative solutions in nanomedicine, providing a practical microfluidic mixing system for the design and large-scale production of nanomedicines.
Collapse
Affiliation(s)
- Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | - Yunfeng Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Xianglin Liu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | - Yue Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Cheng Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Lingxi Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Haiping Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Haixia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| |
Collapse
|
2
|
Rajaram S, Synnott NC, Crown J, Madden SF, Duffy MJ. Targeting mutant p53 with arsenic trioxide: A preclinical study focusing on triple negative breast cancer. Transl Oncol 2024; 46:102025. [PMID: 38870678 PMCID: PMC11225897 DOI: 10.1016/j.tranon.2024.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
New treatments are urgently required for triple-negative breast cancer (TNBC). As TP53 is mutated in approximately 80% of TNBC, it is theoretically an attractive target for new drugs for this disease. Arsenic trioxide (ATO), which is used to treat promyelocytic leukaemia, was recently shown to reactivate mutant p53 and restore wild-type functionality. The aim of this study was to evaluate ATO as a potential new treatment for TNBC. Using a panel of 20 cell lines, we found that TNBC cell lines were more sensitive to ATO than non-TNBC cell lines (P = 0.045). Consistent with its ability to reactivate mutant p53, ATO was a more potent inhibitor of proliferation in cell lines with mutant TP53 than the wildtype TP53 (P = 0.027). Direct evidence of mutant p53 reactivation was the induction of multiple wild-type p53 canonical target genes such as CDKN1A, SLC7A11, BBC3, PMAIP1, SESN2, SRXN1 and TXNRD1. Our findings support the activation of mutant p53 by ATO and, furthermore, the possible repurposing of ATO to treat TP53-mutated TNBC.
Collapse
Affiliation(s)
- Subhasree Rajaram
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Naoise C Synnott
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - John Crown
- Department of Medical Oncology, St. Vincent's University Hospital, Dublin D04 T6F4, Ireland
| | - Stephen F Madden
- Data Science Centre, School of Population Health, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland; UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin D04 T6F4, Ireland.
| |
Collapse
|
3
|
Zeng W, Luo Y, Gan D, Zhang Y, Deng H, Liu G. Advances in Doxorubicin-based nano-drug delivery system in triple negative breast cancer. Front Bioeng Biotechnol 2023; 11:1271420. [PMID: 38047286 PMCID: PMC10693343 DOI: 10.3389/fbioe.2023.1271420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
Triple positive breast cancer (TPBC) is one of the most aggressive breast cancer. Due to the unique cell phenotype, aggressiveness, metastatic potential and lack of receptors or targets, chemotherapy is the choice of treatment for TNBC. Doxorubicin (DOX), one of the representative agents of anthracycline chemotherapy, has better efficacy in patients with metastatic TNBC (mTNBC). DOX in anthracycline-based chemotherapy regimens have higher response rates. Nano-drug delivery systems possess unique targeting and ability of co-load, deliver and release chemotherapeutic drugs, active gene fragments and immune enhancing factors to effectively inhibit or kill tumor cells. Therefore, advances in nano-drug delivery systems for DOX therapy have attracted a considerable amount of attention from researchers. In this article, we have reviewed the progress of nano-drug delivery systems (e.g., Nanoparticles, Liposomes, Micelles, Nanogels, Dendrimers, Exosomes, etc.) applied to DOX in the treatment of TNBC. We also summarize the current progress of clinical trials of DOX combined with immune checkpoint inhibitors (ICIS) for the treatment of TNBC. The merits, demerits and future development of nanomedicine delivery systems in the treatment of TNBC are also envisioned, with the aim of providing a new class of safe and efficient thoughts for the treatment of TNBC.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yuning Luo
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Dali Gan
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Yaofeng Zhang
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Huan Deng
- Department of Pharmacy, Shenzhen Longgang Second People’s Hospital, Shenzhen, Guangdong, China
| | - Guohui Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Licata L, Mariani M, Rossari F, Viale G, Notini G, Naldini MM, Bosi C, Piras M, Dugo M, Bianchini G. Tissue- and liquid biopsy-based biomarkers for immunotherapy in breast cancer. Breast 2023; 69:330-341. [PMID: 37003065 PMCID: PMC10070181 DOI: 10.1016/j.breast.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy and now represent the mainstay of treatment for many tumor types, including triple-negative breast cancer and two agnostic registrations. However, despite impressive durable responses suggestive of an even curative potential in some cases, most patients receiving ICIs do not derive a substantial benefit, highlighting the need for more precise patient selection and stratification. The identification of predictive biomarkers of response to ICIs may play a pivotal role in optimizing the therapeutic use of such compounds. In this Review, we describe the current landscape of tissue and blood biomarkers that could serve as predictive factors for ICI treatment in breast cancer. The integration of these biomarkers in a "holistic" perspective aimed at developing comprehensive panels of multiple predictive factors will be a major step forward towards precision immune-oncology.
Collapse
Affiliation(s)
- Luca Licata
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Mariani
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Rossari
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Viale
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Notini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Maria Naldini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy; San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Bosi
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Piras
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy
| | - Giampaolo Bianchini
- Department of Medical Oncology, San Raffaele Hospital, Milan, Italy; School of Medicine and Surgery, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|