1
|
Villagrasa AC, Gozalbo NP, González BV, López-Zamora M. The Comprehension of Grammatical Structures in a Pediatric Population with ASD and Epilepsy: A Comparative Study. J Autism Dev Disord 2024:10.1007/s10803-024-06291-9. [PMID: 38393436 DOI: 10.1007/s10803-024-06291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Autism Spectrum Disorder (ASD) and epilepsy represent a comorbidity that negatively influences the proper development of linguistic competencies, particularly in receptive language, in the pediatric population. This group displays impairments in the auditory comprehension of both simple and complex grammatical structures, significantly limiting their performance in language-related activities, hampering their integration into social contexts, and affecting their quality of life. The main objective of this study was to assess auditory comprehension of grammatical structures in individuals with ASD and epilepsy and compare the results among the three groups. A non-experimental cross-sectional study was designed, including a total of 170 participants aged between 7 and 9 years, divided into three groups: a group with ASD, a group with epilepsy, and a comorbid group with both ASD and epilepsy (ASDEP). The comprehension of grammatical structures was assessed using the CEG and CELF-5 instruments. Statistical analyses included MANOVA and ANOVA to compare scores between groups to verify associations between study variables. The results indicate that the group with ASD and epilepsy performed worse compared to the ASD and epilepsy-only groups, respectively. Additionally, a significant and directly proportional association was observed among all variables within the measures of grammatical structure comprehension. The neurological damage caused by epilepsy in the pediatric population with ASD leads to difficulties in understanding oral language. This level of functioning significantly limits the linguistic performance of these children, negatively impacting their quality of life and the development of core language skills.
Collapse
Affiliation(s)
| | - Nadia Porcar Gozalbo
- Facultad de Ciencias de la Salud, Universidad Internacional de Valencia, Valencia, Spain
| | | | - Miguel López-Zamora
- Departamento de Psicología Evolutiva y de la Educación, Facultad de Psicología y Logopedia, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
2
|
Ma RF, Xue LL, Liu JX, Chen L, Xiong LL, Wang TH, Liu F. Transcranial Doppler Ultrasonography detection on cerebral infarction and blood vessels to evaluate hypoxic ischemic encephalopathy modeling. Brain Res 2024; 1822:148580. [PMID: 37709160 DOI: 10.1016/j.brainres.2023.148580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND This study aimed to observe changes of rats' brain infarction and blood vessels during neonatal hypoxic ischemic encephalopathy (NHIE) modeling by Transcranial Doppler Ultrasonography (TCD) so as to assess the feasibility of TCD in evaluating NHIE modeling. METHODS Postnatal 7-days (d)-old Sprague Dawley (SD) rats were divided into the Sham group, hypoxic-ischemic (HI) group, and hypoxia (H) group. Rats in the HI group and H group were subjected to hypoxia-1 hour (h), 1.5 h and 2.5 h, respectively. Evaluation on brain lesion was made based on Zea-Longa scores, hematoxylin-eosin (HE) staining and Nissl staining. The brain infarction and blood vessels of rats were monitored and analyzed under TCD. Correlation analysis was applied to reveal the connection between hypoxic duration and infarct size detected by TCD or Nissl staining. RESULTS In H and HI modeling, longer duration of hypoxia was associated with higher Zea-Longa scores and more severe nerve damage. On the 1 d after modeling, necrosis was found in SD rats' brain indicated by HE and Nissl staining, which was aggravated as hypoxic duration prolonged. Alteration of brain structures and blood vessels of SD rats was displayed in Sham, HI and H rats under TCD. TCD images for coronal section revealed that brain infarct was detected at the cortex and there was marked cerebrovascular back-flow of HI rats regardless of hypoxic duration. On the 7 d after modeling, similar infarct was detected under TCD at the cortex of HI rats in hypoxia-1 h, 1.5 h and 2.5 h groups, whereas the morphological changes were deteriorated with longer hypoxic time. Correlation analysis revealed positive correlation of hypoxic duration with infarct size detected by histological detection and TCD. CONCLUSIONS TCD dynamically monitored cerebral infarction after NHIE modeling, which will be potentially served as a useful auxiliary method for future animal experimental modeling evaluation in the case of less animal sacrifice.
Collapse
Affiliation(s)
- Rui-Fang Ma
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; School of Basic Medical Sciences, Kunming Medical University, Kunming 650000, Yunnan, China
| | - Lu-Lu Xue
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin-Xiang Liu
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650000, Yunnan, China
| | - Li Chen
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; School of Basic Medical Sciences, Kunming Medical University, Kunming 650000, Yunnan, China.
| | - Fei Liu
- Department of Anesthesiology, Institute of Neurological Disease, National-Local Joint Engineering Research Center of Translational Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
3
|
Wei X, Huang G, Liu J, Ge J, Zhang W, Mei Z. An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomed Pharmacother 2023; 162:114619. [PMID: 37004330 DOI: 10.1016/j.biopha.2023.114619] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The most frequent reason of morbidity and mortality in the world, cerebral ischemia sets off a chain of molecular and cellular pathologies that associated with some central nervous system (CNS) disorders mainly including ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy and other CNS diseases. In recent times, despite significant advancements in the treatment of the pathological processes underlying various neurological illnesses, effective therapeutic approaches that are specifically targeted to minimizing the damage of such diseases remain absent. Hippo signaling pathway, characterized by enzyme linked reactions between MSTI/2, LAST1/2, and YAP or TAZ proteins, controls cell division, survival, and differentiation, as well as being engaged in a variety of biological activities, such as the development and transformation of the nervous system. Recently, accumulating studies demonstrated that Hippo pathway takes part in the processes of ischemic stroke, AD, PD, etc., including but not limited to oxidative stress, inflammatory response, blood-brain barrier damage, mitochondrial disorders, and neural cells death. Thus, it's crucial to understand the molecular basis of the Hippo signaling pathway for determining potential new therapeutic targets against ischemia-associated CNS diseases. Here, we discuss latest advances in the deciphering of the Hippo signaling pathway and highlight the therapeutic potential of targeting the pathway in treating ischemia-associated CNS diseases.
Collapse
|
4
|
Hanin A, Cespedes J, Huttner A, Strelnikov D, Gopaul M, DiStasio M, Vezzani A, Hirsch LJ, Aronica E. Neuropathology of New-Onset Refractory Status Epilepticus (NORSE). J Neurol 2023:10.1007/s00415-023-11726-x. [PMID: 37079033 DOI: 10.1007/s00415-023-11726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
New-Onset Refractory Status Epilepticus (NORSE), including its subtype with a preceding febrile illness known as FIRES (Febrile Infection-Related Epilepsy Syndrome), is one of the most severe forms of status epilepticus. Despite an extensive workup (clinical evaluation, EEG, imaging, biological tests), the majority of NORSE cases remain unexplained (i.e., "cryptogenic NORSE"). Understanding the pathophysiological mechanisms underlying cryptogenic NORSE and the related long-term consequences is crucial to improve patient management and preventing secondary neuronal injury and drug-resistant post-NORSE epilepsy. Previously, neuropathological evaluations conducted on biopsies or autopsies have been found helpful for identifying the etiologies of some cases that were previously of unknown cause. Here, we summarize the findings of studies reporting neuropathology findings in patients with NORSE, including FIRES. We identified 64 cryptogenic cases and 66 neuropathology tissue samples, including 37 biopsies, 18 autopsies, and seven epilepsy surgeries (the type of tissue sample was not detailed for 4 cases). We describe the main neuropathology findings and place a particular emphasis on cases for which neuropathology findings helped establish a diagnosis or elucidate the pathophysiology of cryptogenic NORSE, or on described cases in which neuropathology findings supported the selection of specific treatments for patients with NORSE.
Collapse
Affiliation(s)
- Aurélie Hanin
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, AP-HP, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, DMU Neurosciences 6, Paris, France.
- Epilepsy Unit and Department of Clinical Neurophysiology, AP-HP, Hôpital de La Pitié-Salpêtrière, DMU Neurosciences 6, Paris, France.
| | - Jorge Cespedes
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- School of Medicine, Universidad Autonoma de Centro America, San Jose, Costa Rica
| | - Anita Huttner
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - David Strelnikov
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Margaret Gopaul
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Marcello DiStasio
- Department of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Annamaria Vezzani
- Department of Acute Brain Injury, Istituto di Recerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef 9, 1105, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|