1
|
Bai M, Sen B, Wen S, Ye H, He Y, Zhang X, Wang G. Culturable Diversity of Thraustochytrids from Coastal Waters of Qingdao and Their Fatty Acids. Mar Drugs 2022; 20:229. [PMID: 35447902 PMCID: PMC9029807 DOI: 10.3390/md20040229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Thraustochytrids have gained significant attention in recent years because of their considerable ecological and biotechnological importance. Yet, the influence of seasons and habitats on their culturable diversity and lipid profile remains poorly described. In this study, a total of 58 thraustochytrid strains were isolated from the coastal waters of Qingdao, China. These strains were phylogenetically close to five thraustochytrid genera, namely Botryochytrium, Oblongichytrium, Schizochytrium, Thraustochytrium, and Sicyoidochytrium. Most of the isolated strains were classified into the genera Thraustochytrium and Oblongichytrium. Further diversity analysis revealed that samples collected from nutrient-rich habitats and during summer/fall yielded significantly higher culturable diversity of thraustochytrids than those from low-nutrient habitats and winter/spring. Moreover, sampling habitats and seasons significantly impacted the fatty acid profiles of the strains. Particularly, the Oblongichytrium sp. OC931 strain produced a significant amount (153.99 mg/L) of eicosapentaenoic acid (EPA), accounting for 9.12% of the total fatty acids, which was significantly higher than that of the previously reported Aurantiochytrium strains. Overall, the results of this study fill the gap in our current understanding of the culturable diversity of thraustochytrids in the coastal waters and the impact of the sampling habitats and seasons on their capacity for lipid accumulation.
Collapse
Affiliation(s)
- Mohan Bai
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (B.S.); (S.W.); (H.Y.); (Y.H.)
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (B.S.); (S.W.); (H.Y.); (Y.H.)
| | - Shuai Wen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (B.S.); (S.W.); (H.Y.); (Y.H.)
| | - Huike Ye
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (B.S.); (S.W.); (H.Y.); (Y.H.)
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (B.S.); (S.W.); (H.Y.); (Y.H.)
| | - Xiaobo Zhang
- College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (B.S.); (S.W.); (H.Y.); (Y.H.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Colonia BSO, de Melo Pereira GV, Mendonça Rodrigues F, de Souza Miranda Muynarsk E, da Silva Vale A, Cesar de Carvalho J, Thomaz Soccol V, de Oliveira Penha R, Ricardo Soccol C. Integrating metagenetics and high-throughput screening for bioprospecting marine thraustochytrids producers of long-chain polyunsaturated fatty acids. BIORESOURCE TECHNOLOGY 2021; 333:125176. [PMID: 33894449 DOI: 10.1016/j.biortech.2021.125176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Omega-3 produced by marine thraustochytrids has appeared as an alternative to fish oil and an eco-friendly solution to overfishing. Herein, an integrative analysis of metagenetics and high-throughput screening was used for bioprospecting marine thraustochytrids from southern Brazil mangrove and coastal seawater. All sampled environments showed biodiversity and abundance of SAR clade. Environmental samples detected with potential lipid-accumulating labyrinthulomycetes were further processed for direct plating and pollen baiting isolation. Microtiter plate system and fluorescence spectroscopy were combined for high-throughput screening of 319 isolates to accumulate lipids. Twenty isolates were selected for submerged cultivation and lipid characterization. Among them, B36 isolate, identified as Aurantiochytrium sp. by 18s rRNA sequencing, achieved the highest biomass (25.60 g/l CDW) and lipids (17.12 g/l CDW). This lipid content had a high biological value with 44.37% LC-PUFAs and 34.6% DHA, which can be used as a sustainable source in vegan, seafood-free and animal feed diets.
Collapse
Affiliation(s)
| | | | - Felipe Mendonça Rodrigues
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | | | - Alexander da Silva Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Júlio Cesar de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Vanete Thomaz Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Rafaela de Oliveira Penha
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), 81531-970 Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Sirirak K, Powtongsook S, Suanjit S, Jaritkhuan S. Effectiveness of various bioreactors for thraustochytrid culture and production ( Aurantiochytruim limacinum BUCHAXM 122). PeerJ 2021; 9:e11405. [PMID: 34123585 PMCID: PMC8164841 DOI: 10.7717/peerj.11405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to develop bioreactors for cultivation of thraustochytrid, Aurantiochytrium limacinum BUCHAXM 122, that are low in cost and simple to operate. Obtaining maximum biomass and fatty acid production was a prerequisite. Three bioreactor designs were used: stirred tank bioreactor (STB), bubble bioreactor (BB) and internal loop airlift bioreactor (ILAB). The bioreactors were evaluated for their influence on oxygen mass transfer coefficient (kLa), using various spargers, mixing speed, and aeration rates. Biomass and DHA production from STB, BB, ILAB were then compared with an incubator shaker, using batch culture experiments. Results showed that a bundle of eight super-fine pore air stones was the best type of aeration sparger for all three bioreactors. Optimal culture conditions in STB were 600 rpm agitation speed and 2 vvm aeration rate, while 2 vvm and 1.5 vvm aeration provided highest biomass productivity in BB and ILAB, respectively. Antifoam agent was needed for all reactor types in order to reduce excessive foaming. Results indicated that with optimized conditions, these bioreactors are capable of thraustochytrid cultivation with a similar efficiency as cultivation using a rotary shaker. STB had the highest kLa and provided the highest biomass of 43.05 ± 0.35 g/L at 48 h. BB was simple in design, had low operating costs and was easy to build, but yielded the lowest biomass (27.50 ± 1.56 g/L). ILAB, on the other hand, had lower kLa than STB, but provided highest fatty acid productivity, of 35.36 ± 2.51% TFA.
Collapse
Affiliation(s)
- Khanoksinee Sirirak
- Graduate Program in Environmental Science, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Sorawit Powtongsook
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sudarat Suanjit
- Department of Microbiology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Somtawin Jaritkhuan
- Department of Aquatic Science, Faculty of Science, Burapha University, Chon Buri, Thailand
| |
Collapse
|
4
|
Orozco Colonia BS, Vinícius de Melo Pereira G, Soccol CR. Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Wang Q, Ye H, Xie Y, He Y, Sen B, Wang G. Culturable Diversity and Lipid Production Profile of Labyrinthulomycete Protists Isolated from Coastal Mangrove Habitats of China. Mar Drugs 2019; 17:md17050268. [PMID: 31064054 PMCID: PMC6562557 DOI: 10.3390/md17050268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 11/18/2022] Open
Abstract
Labyrinthulomycete protists have gained significant attention in the recent past for their biotechnological importance. Yet, their lipid profiles are poorly described because only a few large-scale isolation attempts have been made so far. Here, we isolated more than 200 strains from mangrove habitats of China and characterized the molecular phylogeny and lipid accumulation potential of 71 strains. These strains were the closest relatives of six genera namely Aurantiochytrium, Botryochytrium, Parietichytrium, Schizochytrium, Thraustochytrium, and Labyrinthula. Docosahexaenoic acid (DHA) production of the top 15 strains ranged from 0.23 g/L to 1.14 g/L. Two labyrinthulid strains, GXBH-107 and GXBH-215, exhibited unprecedented high DHA production potential with content >10% of biomass. Among all strains, ZJWZ-7, identified as an Aurantiochytrium strain, exhibited the highest DHA production. Further optimization of culture conditions for strain ZJWZ-7 showed improved lipid production (1.66 g/L DHA and 1.68 g/L saturated fatty acids (SFAs)) with glycerol-malic-acid, peptone-yeast-extract, initial pH 7, 28 °C, and rotation rate 150 rpm. Besides, nitrogen source, initial pH, temperature, and rotation rate had significant effects on the cell biomass, DHA, and SFAs production. This study provides the identification and characterization of nearly six dozen thraustochytrids and labyrinthulids with high potential for lipid accumulation.
Collapse
Affiliation(s)
- Qiuzhen Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
- Ocean College of Hebei Agricultural University, Qinhuangdao 066000, China.
| | - Huike Ye
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|