1
|
Yang S, Xia C, Zhang Y, Shen Y, Xia C, Lu Y, Su S, Deng C, Harypursat V, Wang J, Yuan J, Chen Y. Clinical features and viral load variations of Mpox: a retrospective study in Chongqing, China. BMC Infect Dis 2024; 24:641. [PMID: 38926635 PMCID: PMC11202379 DOI: 10.1186/s12879-024-09537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
PURPOSE Since May 2022, Mpox has spread extensively outside of Africa, posing a serious threat to the health of people globally, and particularly to the men who have sex with men (MSM) population. Chongqing, a province in Southwest China, has relatively large MSM and people living with HIV (PLWH) populations, presenting conditions conducive to the wide dissemination of Mpox. In this study, we investigated the clinical characteristics of Mpox patients among MSM and PLWH in Chongqing, aiming to inform the development of targeted prevention, control, and treatment strategies for Mpox. METHOD We evaluated the clinical characteristics, travel history, time of onset, distribution and number of skin lesions of Mpox patients admitted to the Chongqing Public Health Medical Center between September 2022 and October 2023. Meanwhile, a series of clinical samples were collected and the pathogen of interest was identified as Mpox virus using quantitative polymerase chain reaction (qPCR). The results were presented in the form of cycle thresholds (Ct), which help to approximate the quantification of viral load. RESULTS As of October 11, 2023, the Chongqing Public Health Medical Center reported a total of nine Mpox virus infections. All the patients identified were male and belonged to the MSM population, among whom seven (77.8%) were living with HIV, and maintained a preserved immune system while achieving viral suppression via effective ART. We observed no discernible clinical differences between MSM with Mpox with or without HIV, and no fatalities were recorded. Viral loads were observed to be higher in samples taken from the skin than those from the throat, nasopharynx, blood, or semen. CONCLUSION In this retrospective study, the clinical manifestations of MPXV infection appeared consistent among MSM patients, regardless of HIV status. Elevated MPXV viral loads in the skin and mucosal tissues, particularly at genital and anal sites, indicate that transmission is more likely to occur via direct physical contact as opposed to respiratory pathways or through exposure to bodily fluids.
Collapse
Affiliation(s)
- Sen Yang
- Biobank, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Chao Xia
- Biobank, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yuxin Zhang
- Biobank, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yan Shen
- Biobank, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Chengshuang Xia
- Biobank, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Yanqiu Lu
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Shifang Su
- Department of Disease Prevention, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Changgang Deng
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Jing Wang
- Department of Medical Laboratory, Chongqing Public Health Medical Center, Chongqing, 400036, China
| | - Jing Yuan
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, 400036, China.
| | - Yemiao Chen
- Biobank, Chongqing Public Health Medical Center, Chongqing, 400036, China.
| |
Collapse
|
2
|
Mungmunpuntipantip R, Wiwanitkit V. Orf, a Human Parapoxvirus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:171-181. [PMID: 38801578 DOI: 10.1007/978-3-031-57165-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite being common worldwide, parapoxvirus infections are regarded as neglected zoonoses because their incidence is either unknown or grossly overestimated. In ruminants all throughout the world, parapoxvirus produces oral lesions and infectious pustular dermatitis. The pathogen is typically spread directly via items contaminated with parapoxvirus and indirectly via a near contact with dermatological lesions that contain the virus on affected animals. Animals infected with the parapoxvirus typically exhibit no clinical symptoms, and the mode of parapoxvirus transmission is occasionally unclear. For accurate etiological diagnosis and appropriate therapy of patients affected by zoonotic infections, the significance of adopting a "One Health" approach and cross-sector collaboration between human and veterinary medicine should be emphasized. The causative pathogen of ecthyma contagiosum in general people is the orf virus, which mostly infects various animals, either pets or wildlife species. The illness primarily affects minute wild ruminants, sheep, cattle, deer, and goats, and it can spread to people through contact with infected animals or contaminated meats anywhere in the world. Taxonomically speaking, the virus belongs to the parapoxvirus genus. Thus pathogen can be detected from crusts for a very long period (several months to several years), and the virus is found to be resistant to inactivation with a hot or dry atmosphere. In immunocompetent individuals, the lesions often go away on their own with a period as long 2 months. Nevertheless, it necessitates the applying of diverse strategies, such as antiviral, immunological modulator, or modest surgical excisions in immunosuppressed patients. The interaction of the virus with various host populations aids in the development of a defense mechanism against the immune system. The parapoxvirus illness in humans is covered in this chapter. The orf illness, a significant known human parapoxvirus infection, is given specific attention.
Collapse
|
3
|
Therapeutic strategies for human poxvirus infections: Monkeypox (mpox), smallpox, molluscipox, and orf. Travel Med Infect Dis 2022; 52:102528. [PMID: 36539022 PMCID: PMC9758798 DOI: 10.1016/j.tmaid.2022.102528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Therapeutic and vaccine development for human poxvirus infections (e.g., monkeypox (mpox) virus, variola virus, molluscum contagiosum virus, orf virus) has been largely deserted, especially after the eradication of smallpox by 1980. Human mpox is a self-limited disease confined to Central and West Africa for decades. However, since April 2022, mpox has quickly emerged as a multi-country outbreak, urgently calling for effective antiviral agents and vaccines to control mpox. Here, this review highlights possible therapeutic options (e.g., tecovirimat, brincidofovir, cidofovir) and other strategies (e.g., vaccines, intravenous vaccinia immune globulin) for the management of human poxvirus infections worldwide.
Collapse
|
4
|
Abstract
The current focus for many researchers has turned to the development of therapeutics that have the potential for serving as broad-spectrum inhibitors that can target numerous viruses, both within a particular family, as well as to span across multiple viral families. This will allow us to build an arsenal of therapeutics that could be used for the next outbreak. In that regard, nucleosides have served as the cornerstone for antiviral therapy for many decades. As detailed herein, many nucleosides have been shown to inhibit multiple viruses due to the conserved nature of many viral enzyme binding sites. Thus, it is somewhat surprising that up until very recently, many researchers focused more on "one bug one drug," rather than trying to target multiple viruses given those similarities. This attitude is now changing due to the realization that we need to be proactive rather than reactive when it comes to combating emerging and reemerging infectious diseases. A brief summary of prominent nucleoside analogues that previously exhibited broad-spectrum activity and are now under renewed interest, as well as new analogues, that are currently under investigation against SARS-CoV-2 and other viruses is discussed herein.
Collapse
|
5
|
Fletcher NF, Meredith LW, Tidswell EL, Bryden SR, Gonçalves-Carneiro D, Chaudhry Y, Shannon-Lowe C, Folan MA, Lefteri DA, Pingen M, Bailey D, McKimmie CS, Baird AW. A novel antiviral formulation inhibits a range of enveloped viruses. J Gen Virol 2020; 101:1090-1102. [PMID: 32692647 DOI: 10.1099/jgv.0.001472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Some free fatty acids derived from milk and vegetable oils are known to have potent antiviral and antibacterial properties. However, therapeutic applications of short- to medium-chain fatty acids are limited by physical characteristics such as immiscibility in aqueous solutions. We evaluated a novel proprietary formulation based on an emulsion of short-chain caprylic acid, ViroSAL, for its ability to inhibit a range of viral infections in vitro and in vivo. In vitro, ViroSAL inhibited the enveloped viruses Epstein-Barr, measles, herpes simplex, Zika and orf parapoxvirus, together with Ebola, Lassa, vesicular stomatitis and severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) pseudoviruses, in a concentration- and time-dependent manner. Evaluation of the components of ViroSAL revealed that caprylic acid was the main antiviral component; however, the ViroSAL formulation significantly inhibited viral entry compared with caprylic acid alone. In vivo, ViroSAL significantly inhibited Zika and Semliki Forest virus replication in mice following the inoculation of these viruses into mosquito bite sites. In agreement with studies investigating other free fatty acids, ViroSAL had no effect on norovirus, a non-enveloped virus, indicating that its mechanism of action may be surfactant disruption of the viral envelope. We have identified a novel antiviral formulation that is of great interest for the prevention and/or treatment of a broad range of enveloped viruses, particularly those of the skin and mucosal surfaces.
Collapse
Affiliation(s)
- Nicola F Fletcher
- Institute of Immunity and Infection, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke W Meredith
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma L Tidswell
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Steven R Bryden
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniel Gonçalves-Carneiro
- Present address: Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA.,Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Yasmin Chaudhry
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Shannon-Lowe
- School of Cancer Sciences, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Michael A Folan
- Westgate Biomedical Ltd, Lough Eske, Donegal Town, Co. Donegal, Ireland.,Institute of Immunity and Infection, The University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniella A Lefteri
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Marieke Pingen
- Present address: Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK.,Virus Host Interaction Team, Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS9 7TF, UK
| | - Clive S McKimmie
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alan W Baird
- Institute of Immunity and Infection, The University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF. Nat Commun 2016; 7:13228. [PMID: 27819269 PMCID: PMC5103067 DOI: 10.1038/ncomms13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 09/14/2016] [Indexed: 12/22/2022] Open
Abstract
Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. Viruses often subvert the host immune system using molecular decoys to prevent an effective immune response. Here, the authors examine the structural details of the viral decoy receptor GIF and its antagnosim of GM-CSF and IL-2.
Collapse
|
7
|
Hosamani M, Scagliarini A, Bhanuprakash V, McInnes CJ, Singh RK. Orf: an update on current research and future perspectives. Expert Rev Anti Infect Ther 2014; 7:879-93. [PMID: 19735227 DOI: 10.1586/eri.09.64] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhusudan Hosamani
- Indian Veterinary Research Institute, Mukteswar-263138, Nainital Distt., India and Indian Veterinary Research Institute, Hebbal, Bangalore-24, India.
| | | | | | | | | |
Collapse
|
8
|
Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Extent of Intramolecular π Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72) [1, 2]. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Affiliation(s)
- Bengu Gerceker Turk
- Department of Dermatology and Venereology, Ege University Medical Faculty, Izmir, Turkey Department of Pathology, Ege University Medical Faculty, Izmir, Turkey E-mail:
| | | | | | | |
Collapse
|
10
|
Tack DM, Reynolds MG. Zoonotic Poxviruses Associated with Companion Animals. Animals (Basel) 2011; 1:377-95. [PMID: 26486622 PMCID: PMC4513476 DOI: 10.3390/ani1040377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/02/2011] [Accepted: 11/15/2011] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Contemporary enthusiasm for the ownership of exotic animals and hobby livestock has created an opportunity for the movement of poxviruses—such as monkeypox, cowpox, and orf—outside their traditional geographic range bringing them into contact with atypical animal hosts and groups of people not normally considered at risk. It is important that pet owners and practitioners of human and animal medicine develop a heightened awareness for poxvirus infections and understand the risks that can be associated with companion animals and livestock. This article reviews the epidemiology and clinical features of zoonotic poxviruses that are most likely to affect companion animals. Abstract Understanding the zoonotic risk posed by poxviruses in companion animals is important for protecting both human and animal health. The outbreak of monkeypox in the United States, as well as current reports of cowpox in Europe, point to the fact that companion animals are increasingly serving as sources of poxvirus transmission to people. In addition, the trend among hobbyists to keep livestock (such as goats) in urban and semi-urban areas has contributed to increased parapoxvirus exposures among people not traditionally considered at high risk. Despite the historic notoriety of poxviruses and the diseases they cause, poxvirus infections are often missed. Delays in diagnosing poxvirus-associated infections in companion animals can lead to inadvertent human exposures. Delays in confirming human infections can result in inappropriate treatment or prolonged recovery. Early recognition of poxvirus-associated infections and application of appropriate preventive measures can reduce the spread of virus between companion animals and their owners. This review will discuss the epidemiology and clinical features associated with the zoonotic poxvirus infections most commonly associated with companion animals.
Collapse
Affiliation(s)
- Danielle M Tack
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | - Mary G Reynolds
- Poxvirus and Rabies Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
11
|
Nandi S, De UK, Chowdhury S. Current status of contagious ecthyma or orf disease in goat and sheep—A global perspective. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2010.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Cidofovir Activity against Poxvirus Infections. Viruses 2010; 2:2803-30. [PMID: 21994641 PMCID: PMC3185586 DOI: 10.3390/v2122803] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 01/26/2023] Open
Abstract
Cidofovir [(S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine, HPMPC] is an acyclic nucleoside analog approved since 1996 for clinical use in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients. Cidofovir (CDV) has broad-spectrum activity against DNA viruses, including herpes-, adeno-, polyoma-, papilloma- and poxviruses. Among poxviruses, cidofovir has shown in vitro activity against orthopox [vaccinia, variola (smallpox), cowpox, monkeypox, camelpox, ectromelia], molluscipox [molluscum contagiosum] and parapox [orf] viruses. The anti-poxvirus activity of cidofovir in vivo has been shown in different models of infection when the compound was administered either intraperitoneal, intranasal (aerosolized) or topically. In humans, cidofovir has been successfully used for the treatment of recalcitrant molluscum contagiosum virus and orf virus in immunocompromised patients. CDV remains a reference compound against poxviruses and holds potential for the therapy and short-term prophylaxis of not only orthopox- but also parapox- and molluscipoxvirus infections.
Collapse
|
13
|
De Clercq E. Yet another ten stories on antiviral drug discovery (part D): paradigms, paradoxes, and paraductions. Med Res Rev 2010; 30:667-707. [PMID: 19626594 DOI: 10.1002/med.20173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review article presents the fourth part (part D) in the series of stories on antiviral drug discovery. The stories told in part D focus on: (i) the cyclotriazadisulfonamide compounds; (ii) the {5-[(4-bromophenylmethyl]-2-phenyl-5H-imidazo[4,5-c]pyridine} compounds; (iii) (1H,3H-thiazolo[3,4-a]benzimidazole) derivatives; (iv) T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) and (v) its structurally closely related analogue pyrazine 2-carboxamide (pyrazinamide); (vi) new strategies for the treatment of hemorrhagic fever virus infections, including, as the most imminent, (vii) dengue fever, (viii) the veterinary use of acyclic nucleoside phosphonates; (ix) the potential (off-label) use of cidofovir in the treatment of papillomatosis, particularly RRP (recurrent respiratory papillomatosis); and (x) finally, the prophylactic use of tenofovir to prevent HIV infections.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, K.U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
14
|
Sonvico F, Colombo G, Gallina L, Bortolotti F, Rossi A, McInnes CJ, Massimo G, Colombo P, Scagliarini A. Therapeutic paint of cidofovir/sucralfate gel combination topically administered by spraying for treatment of orf virus infections. AAPS J 2009; 11:242-9. [PMID: 19381838 PMCID: PMC2691461 DOI: 10.1208/s12248-009-9101-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/25/2009] [Indexed: 11/30/2022] Open
Abstract
The aim of the research was to study a new cidofovir/sucralfate drug product to be used as a spray for treating the mucosal and/or skin lesions. The product, i.e., a water suspension of sucralfate (15% w/w) and cidofovir (1% w/w), combines the potent antiviral activity of the acyclic nucleoside phosphonate cidofovir ((S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine) and the wound healing properties of sucralfate gel (sucrose octasulphate basic aluminum salt). The product was characterized in vitro with respect to compatibility between drug and carrier, spray particle size, spray deposition, drying kinetics, and drug content and release. An interaction between the two active substances was found. The interaction between sucralfate and cidofovir was counteracted by introducing sodium dihydrogen phosphate (16% w/w) in the preparation. The spray formulation containing cidofovir/sucralfate gel painted the skin and dried quickly to a scab, remaining firmly adhered to the lesions. The therapeutic paint was tested in vivo on lambs infected with orf virus by treating the animals with different cidofovir/sucralfate formulations (0.5% or 1% cidofovir + sucralfate 15% + NaH(2)PO(4) 16% w/w) and with sucralfate gel suspension alone as control. The treatment with formulations containing cidofovir and phosphate salt for four consecutive days resulted in a rapid resolution of the lesions, with scabs containing significantly lower amounts of viable virus when compared with untreated lesions and lesions treated with sucralfate suspension alone.
Collapse
Affiliation(s)
- Fabio Sonvico
- />Department of Pharmacy, University of Parma, Viale G.P. Usberti, 27/a, Parma, 43100 Italy
| | - Gaia Colombo
- />Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | - Laura Gallina
- />Department of Veterinary Public Health and Animal Pathology, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Dell’Emilia, Italy
| | - Fabrizio Bortolotti
- />Department of Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17-19, 44100 Ferrara, Italy
| | - Alessandra Rossi
- />Department of Pharmacy, University of Parma, Viale G.P. Usberti, 27/a, Parma, 43100 Italy
| | - Colin J. McInnes
- />Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, Scotland, UK
| | - Gina Massimo
- />Department of Pharmacy, University of Parma, Viale G.P. Usberti, 27/a, Parma, 43100 Italy
| | - Paolo Colombo
- />Department of Pharmacy, University of Parma, Viale G.P. Usberti, 27/a, Parma, 43100 Italy
| | - Alessandra Scagliarini
- />Department of Veterinary Public Health and Animal Pathology, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano Dell’Emilia, Italy
| |
Collapse
|
15
|
Jesus DM, Moussatché N, Damaso CR. In vitro activity of cidofovir against the emerging Cantagalo virus and the smallpox vaccine strain IOC. Int J Antimicrob Agents 2008; 33:75-9. [PMID: 18804965 DOI: 10.1016/j.ijantimicag.2008.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
The antiviral effect of cidofovir was evaluated against two strains of vaccinia virus: the field strain Cantagalo virus (CTGV) and the smallpox vaccine IOC. The drug severely inhibited virus replication, revealing an EC(50) (drug concentration required to inhibit 50% of virus replication) of 7.68 microM and 9.66 microM, respectively, for CTGV and vaccine strain IOC. Similarly, other field isolates of Cantagalo-like viruses recently collected in distinct outbreaks were equally sensitive to the drug. Pre-treatment of cells prior to infection effectively established an antiviral state, inhibiting virus replication by >90% after 24h in the absence of cidofovir. CTGV infections represent an emerging zoonosis, and outbreaks have been frequently reported in several states of Brazil. Also, the possibility of resuming the manufacture of smallpox vaccine supports the need to evaluate the effect of antiviral drugs on the Brazilian vaccine strain IOC. As there is no currently approved antipoxvirus therapy, our data are extremely encouraging.
Collapse
Affiliation(s)
- Desyreé Murta Jesus
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - CCS, Ilha do Fundão, Rio de Janeiro 21941-590, Brazil
| | | | | |
Collapse
|
16
|
Assessing the efficacy of cidofovir against herpesvirus-induced genital lesions in goats using different therapeutic regimens. Antimicrob Agents Chemother 2008; 52:4064-8. [PMID: 18765685 DOI: 10.1128/aac.00725-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caprine herpesvirus 1 (CpHV-1) infection in goats induces genital vesicular-ulcerative lesions that strictly resemble those produced by human herpesvirus 2 in humans. In previous studies, the potent inhibition of CpHV-1 by cidofovir was demonstrated. Cidofovir antiherpetic activity was evaluated in goats infected experimentally by the vaginal route with CpHV-1 and then treated locally at different times after infection. The administration of 1% cidofovir cream onto vaginal mucosa was able to prevent the onset of genital lesions and to decrease significantly the titers of the virus shed by the infected animals, notably in the groups treated shortly after infection (24 and 48 h). The efficacy of cidofovir against caprine herpesvirus infection was higher when the treatment was started shortly after infection than when lesions were already present and advanced. Herpesvirus genital infection of goats is a useful animal model to study the activity of antiviral drugs against human herpesvirus infections.
Collapse
|