1
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Nuth M, Guan H, Xiao Y, Kulp JL, Parker MH, Strobel ED, Isaacs SN, Scott RW, Reitz AB, Ricciardi RP. Mutation and structure guided discovery of an antiviral small molecule that mimics an essential C-Terminal tripeptide of the vaccinia D4 processivity factor. Antiviral Res 2018; 162:178-185. [PMID: 30578797 PMCID: PMC10124107 DOI: 10.1016/j.antiviral.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/31/2022]
Abstract
The smallpox virus (variola) remains a bioterrorism threat since a majority of the human population has never been vaccinated. In the event of an outbreak, at least two drugs against different targets of variola are critical to circumvent potential viral mutants that acquire resistance. Vaccinia virus (VACV) is the model virus used in the laboratory for studying smallpox. The VACV processivity factor D4 is an ideal therapeutic target since it is both essential and specific for poxvirus replication. Recently, we identified a tripeptide (Gly-Phe-Ile) motif at the C-terminus of D4 that is conserved among poxviruses and is necessary for maintaining protein function. In the current work, a virtual screening for small molecule mimics of the tripeptide identified a thiophene lead that effectively inhibited VACV, cowpox virus, and rabbitpox virus in cell culture (EC50 = 8.4-19.7 μM) and blocked in vitro processive DNA synthesis (IC50 = 13.4 μM). Compound-binding to D4 was demonstrated through various biophysical methods and a dose-dependent retardation of the proteolysis of D4 proteins. This study highlights an inhibitor design strategy that exploits a susceptible region of the protein and identifies a novel scaffold for a broad-spectrum poxvirus inhibitor.
Collapse
Affiliation(s)
- Manunya Nuth
- Department of Microbiology, School of Dental Medicine and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hancheng Guan
- Department of Microbiology, School of Dental Medicine and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuhong Xiao
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Kulp
- Conifer Point Pharmaceuticals, Doylestown, PA, USA
| | | | - Eric D Strobel
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA, USA
| | - Stuart N Isaacs
- Department of Medicine, Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard W Scott
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA, USA
| | - Allen B Reitz
- Fox Chase Chemical Diversity Center, Inc., Doylestown, PA, USA
| | - Robert P Ricciardi
- Department of Microbiology, School of Dental Medicine and the Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Czarnecki MW, Traktman P. The vaccinia virus DNA polymerase and its processivity factor. Virus Res 2017; 234:193-206. [PMID: 28159613 DOI: 10.1016/j.virusres.2017.01.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/29/2017] [Indexed: 10/20/2022]
Abstract
Vaccinia virus is the prototypic poxvirus. The 192 kilobase double-stranded DNA viral genome encodes most if not all of the viral replication machinery. The vaccinia virus DNA polymerase is encoded by the E9L gene. Sequence analysis indicates that E9 is a member of the B family of replicative polymerases. The enzyme has both polymerase and 3'-5' exonuclease activities, both of which are essential to support viral replication. Genetic analysis of E9 has identified residues and motifs whose alteration can confer temperature-sensitivity, drug resistance (phosphonoacetic acid, aphidicolin, cytosine arabinsode, cidofovir) or altered fidelity. The polymerase is involved both in DNA replication and in recombination. Although inherently distributive, E9 gains processivity by interacting in a 1:1 stoichiometry with a heterodimer of the A20 and D4 proteins. A20 binds to both E9 and D4 and serves as a bridge within the holoenzyme. The A20/D4 heterodimer has been purified and can confer processivity on purified E9. The interaction of A20 with D4 is mediated by the N'-terminus of A20. The D4 protein is an enzymatically active uracil DNA glycosylase. The DNA-scanning activity of D4 is proposed to keep the holoenzyme tethered to the DNA template but allow polymerase translocation. The crystal structure of D4, alone and in complex with A201-50 and/or DNA has been solved. Screens for low molecular weight compounds that interrupt the A201-50/D4 interface have yielded hits that disrupt processive DNA synthesis in vitro and/or inhibit plaque formation. The observation that an active DNA repair enzyme is an integral part of the holoenzyme suggests that DNA replication and repair may be coupled.
Collapse
Affiliation(s)
- Maciej W Czarnecki
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Paula Traktman
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Departments of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, United States; Departments of the Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| |
Collapse
|
4
|
Schormann N, Zhukovskaya N, Bedwell G, Nuth M, Gillilan R, Prevelige PE, Ricciardi RP, Banerjee S, Chattopadhyay D. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases. Protein Sci 2016; 25:2113-2131. [PMID: 27684934 DOI: 10.1002/pro.3058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/07/2022]
Abstract
Uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. The adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. An overview of the current state of the knowledge on the structure-function relationship of D4 is provided here.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Natalia Zhukovskaya
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Gregory Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Manunya Nuth
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Richard Gillilan
- MacCHESS (Macromolecular Diffraction Facility at CHESS) Cornell University, Ithaca, New York, 14853
| | - Peter E Prevelige
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Robert P Ricciardi
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104.,Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Surajit Banerjee
- Department of Chemistry and Chemical Biology, Cornell University, and NE-CAT, Argonne, Illinois, 60439
| | | |
Collapse
|
5
|
A novel target and approach for identifying antivirals against molluscum contagiosum virus. Antimicrob Agents Chemother 2014; 58:7383-9. [PMID: 25267668 DOI: 10.1128/aac.03660-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The dermatological disease molluscum contagiosum (MC) presents as lesions restricted solely to the skin. The poxvirus molluscum contagiosum virus (MCV) is responsible for this skin disease that is easily transmitted through casual contact among all populations, with greater frequency in children and immunosuppressed individuals. In addition, sexual transmission of MCV in adolescents and adults is a health concern. Although the skin lesions ultimately resolve in immunocompetent individuals, they can persist for extended periods, be painful, and result in scarring. Treatment is problematic, and there is no drug that specifically targets MCV. The inability of MCV to propagate in cell culture has impeded drug development. To overcome these barriers, we integrated three new developments. First, we identified a new MCV drug target (mD4) that is essential for processive DNA synthesis in vitro. Second, we discovered a small chemical compound that binds to mD4 and prevents DNA synthesis in vitro. Third, and most significant, we engineered a hybrid vaccinia virus (mD4-VV) in which the natural vaccinia D4 (vD4) gene is replaced by the mD4 target gene. This hybrid virus is dependent on mD4 for viral growth in culture and is inhibited by the small compound. This target system provides, for the first time, a platform and approach for the discovery and evaluation of new therapeutics that can be used to treat MC.
Collapse
|
6
|
Contesto-Richefeu C, Tarbouriech N, Brazzolotto X, Betzi S, Morelli X, Burmeister WP, Iseni F. Crystal structure of the vaccinia virus DNA polymerase holoenzyme subunit D4 in complex with the A20 N-terminal domain. PLoS Pathog 2014; 10:e1003978. [PMID: 24603707 PMCID: PMC3946371 DOI: 10.1371/journal.ppat.1003978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A20₁₋₅₀). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A20₁₋₅₀ clearly behaves as a heterodimer. The crystal structure of D4/A20₁₋₅₀ solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A20₁₋₅₀ binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A20₁₋₅₀ formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A20₁₋₅₀ interaction. Finally, we propose a model of D4/A20₁₋₅₀ in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface.
Collapse
Affiliation(s)
| | - Nicolas Tarbouriech
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Xavier Brazzolotto
- Département de Toxicologie et Risque Chimique, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS UMR 7258, INSERM U 1068, Institut Paoli-Calmettes & Aix-Marseille Universités, Marseille, France
| | - Wim P. Burmeister
- Université Grenoble Alpes, UVHCI, Grenoble, France
- CNRS, UVHCI, Grenoble, France
- Unit for Virus Host-Cell Interactions, UMI 3265, Université Grenoble Alpes-EMBL-CNRS, Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, France
- * E-mail:
| |
Collapse
|
7
|
Nichols DB, Fournet G, Gurukumar KR, Basu A, Lee JC, Sakamoto N, Kozielski F, Musmuca I, Joseph B, Ragno R, Kaushik-Basu N. Inhibition of hepatitis C virus NS5B polymerase by S-trityl-L-cysteine derivatives. Eur J Med Chem 2012; 49:191-9. [PMID: 22280819 DOI: 10.1016/j.ejmech.2012.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 01/28/2023]
Abstract
Structure-based studies led to the identification of a constrained derivative of S-trityl-l-cysteine (STLC) scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070, and F-3065, were identified as modest HCV NS5B inhibitors with IC(50) values between 22.3 and 39.7 μM. F-3070 and F-3065 displayed potent inhibition of intracellular NS5B activity in the BHK-NS5B-FRLuc reporter and also inhibited HCV RNA replication in the Huh7/Rep-Feo1b reporter system. Binding mode investigations suggested that the STLC scaffold can be used to develop new NS5B inhibitors by further chemical modification at one of the trityl phenyl group.
Collapse
Affiliation(s)
- Daniel B Nichols
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nuth M, Huang L, Saw YL, Schormann N, Chattopadhyay D, Ricciardi RP. Identification of inhibitors that block vaccinia virus infection by targeting the DNA synthesis processivity factor D4. J Med Chem 2011; 54:3260-7. [PMID: 21438571 DOI: 10.1021/jm101554k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Smallpox was globally eradicated 30 years ago by vaccination. The recent threat of bioterrorism demands the development of improved vaccines and novel therapeutics to effectively preclude a reemergence of smallpox. One new therapeutic target is the vaccinia poxvirus processivity complex, comprising D4 and A20 proteins that enable the viral E9 DNA polymerase to synthesize extended strands. Five compounds identified from an AlphaScreen assay designed to disrupt A20:D4 binding were shown to be effective in: (i) blocking vaccinia processive DNA synthesis in vitro, (ii) preventing cellular infection with minimal cytotoxicity, and (iii) binding to D4, as evidenced by ThermoFluor. The EC(50) values for inhibition of viral infectivity ranged from 9.6 to 23 μM with corresponding selectivity indices (cytotoxicity CC(50)/viral infectivity EC(50)) of 3.9 to 17.8. The five compounds are thus potential therapeutics capable of halting smallpox DNA synthesis and infectivity through disruptive action against a component of the vaccinia processivity complex.
Collapse
Affiliation(s)
- Manunya Nuth
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
9
|
Vaccinia virus D4 mutants defective in processive DNA synthesis retain binding to A20 and DNA. J Virol 2010; 84:12325-35. [PMID: 20861259 DOI: 10.1128/jvi.01435-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome replication is inefficient without processivity factors, which tether DNA polymerases to their templates. The vaccinia virus DNA polymerase E9 requires two viral proteins, A20 and D4, for processive DNA synthesis, yet the mechanism of how this tricomplex functions is unknown. This study confirms that these three proteins are necessary and sufficient for processivity, and it focuses on the role of D4, which also functions as a uracil DNA glycosylase (UDG) repair enzyme. A series of D4 mutants was generated to discover which sites are important for processivity. Three point mutants (K126V, K160V, and R187V) which did not function in processive DNA synthesis, though they retained UDG catalytic activity, were identified. The mutants were able to compete with wild-type D4 in processivity assays and retained binding to both A20 and DNA. The crystal structure of R187V was resolved and revealed that the local charge distribution around the substituted residue is altered. However, the mutant protein was shown to have no major structural distortions. This suggests that the positive charges of residues 126, 160, and 187 are required for D4 to function in processive DNA synthesis. Consistent with this is the ability of the conserved mutant K126R to function in processivity. These mutants may help unlock the mechanism by which D4 contributes to processive DNA synthesis.
Collapse
|
10
|
Musmuca I, Caroli A, Mai A, Kaushik-Basu N, Arora P, Ragno R. Combining 3-D quantitative structure-activity relationship with ligand based and structure based alignment procedures for in silico screening of new hepatitis C virus NS5B polymerase inhibitors. J Chem Inf Model 2010; 50:662-76. [PMID: 20225870 DOI: 10.1021/ci9004749] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The viral NS5B RNA-dependent RNA-polymerase (RdRp) is one of the best-studied and promising targets for the development of novel therapeutics against hepatitis C virus (HCV). Allosteric inhibition of this enzyme has emerged as a viable strategy toward blocking replication of viral RNA in cell based systems. Herein, we describe how the combination of a complete computational procedure together with biological studies led to the identification of novel molecular scaffolds, hitherto untested toward NS5B polymerase. Structure based 3-D quantitative structure-activity relationship (QSAR) models were generated employing NS5B non-nucleoside inhibitors (NNIs), whose bound conformations were readily available from the protein database (PDB). These were grouped into two training sets of structurally diverse NS5B NNIs, based on their binding to the enzyme thumb (15 NNIs) or palm (10 NNIs) domains. Ligand based (LB) and structure based (SB) alignments were rigorously investigated to assess the reliability on the correct molecular alignment for unknown binding mode modeled compounds. Both Surflex and Autodock programs were able to reproduce with minimal errors the experimental binding conformations of 24 experimental NS5B allosteric inhibitors. Eighty-one (thumb) and 223 (palm) modeled compounds taken from literature were LB and SB aligned and used as external validation sets for the development of 3-D QSAR models. Low error of prediction proved the 3-D QSARs to be useful scoring functions for the in silico screening procedure. Finally, the virtual screening of the NCI Diversity Set led to the selection for enzymatic assays of 20 top-scoring molecules for each final model. Among the 40 selected molecules, preliminary data yielded four derivatives exhibiting IC(50) values ranging between 45 and 75 microM. Binding mode analysis of hit compounds within the NS5B polymerase thumb domain showed that one of them, NSC 123526, exhibited a docked conformation which was in good agreement with the thumb training set most active compound (6).
Collapse
Affiliation(s)
- Ira Musmuca
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Universita di Roma, P le A Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Ciustea M, Silverman JEY, Druck Shudofsky AM, Ricciardi RP. Identification of non-nucleoside DNA synthesis inhibitors of vaccinia virus by high-throughput screening. J Med Chem 2008; 51:6563-70. [PMID: 18808105 DOI: 10.1021/jm800366g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Variola virus, the causative agent of smallpox, is a potential bioweapon. The development of new antiviral compounds for smallpox prophylaxis and treatment is critical, especially because the virus can acquire resistance to the drugs that are currently available. We have identified novel small chemical inhibitors that target DNA synthesis of vaccinia, the prototypical poxvirus. Robotic high-throughput screening of 49663 compounds and follow-up studies identified very potent inhibitors of vaccinia DNA synthesis, with IC 50 values as low as 0.5 microM. Cell-based assays showed that 16 inhibitors effectively blocked vaccinia infection with minimal cytotoxicity. Three inhibitors had selectivity indexes that approximate that of cidofovir. These new non-nucleoside inhibitors are expected to interfere with components of the vaccinia DNA synthesis apparatus that are distinct from cidofovir. On the basis of the high sequence similarity between the proteins of vaccinia and variola viruses, these new inhibitors are anticipated to be equally effective against smallpox.
Collapse
Affiliation(s)
- Mihai Ciustea
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|