1
|
Reed-Embleton H, Khan KS, Mathias N, Mahmud S. Case report: incidental findings of COVID-19 infection on positron emission tomography/computed tomography for staging of a giant gastric gastrointestinal stromal tumor. Pan Afr Med J 2020; 35:28. [PMID: 33623553 PMCID: PMC7875735 DOI: 10.11604/pamj.supp.2020.35.2.23167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 02/01/2023] Open
Abstract
We report the incidental finding of COVID-19 in a 59-year-old male, with no significant cardiorespiratory past medical history who underwent a fluorodeoxyglucose positron emission tomography (FDG-PET) scan for investigation of a likely gastric gastrointestinal stromal tumor (GIST). There may be significant discrepancies between clinical symptoms and radiological severity with COVID-19 infection. FDG-PET scanning has the potential to complement traditional radiological imaging in COVID-19 in diagnosis of subclinical diagnosis or early stage disease, as well as monitoring disease progression.
Collapse
Affiliation(s)
- Hamish Reed-Embleton
- Department of Surgery, University Hospital Hairmyres, East Kilbride, Scotland, UK
| | - Khurram Shahzad Khan
- Department of Surgery, University Hospital Hairmyres, East Kilbride, Scotland, UK
| | - Navin Mathias
- Department of Radiology, University Hospital Hairmyres, East Kilbride, Scotland, UK
| | - Sajid Mahmud
- Department of Surgery, University Hospital Hairmyres, East Kilbride, Scotland, UK
| |
Collapse
|
2
|
Poissy J, Terrier O, Lina B, Textoris J, Rosa-Calatrava M. [Modulation of transcriptomic signature of the infected host: a new therapeutic strategy for the management of severe viral infections? Example of the flu]. ACTA ACUST UNITED AC 2016; 25:53-61. [PMID: 32288744 PMCID: PMC7117810 DOI: 10.1007/s13546-016-1188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 11/13/2022]
Abstract
Ces dernières décennies ont été marquées par l’émergence ou la réémergence de virus responsables d’épidémies ou de pandémies plus ou moins sévères. Les stratégies préventives sont prises à défaut, et l’arsenal antiviral curatif est limité d’autant plus que les résistances virales peuvent apparaître rapidement. Par ailleurs, le développement de nouvelles molécules nécessite un délai incompatible avec la réponse rapide nécessaire lors d’une épidémie d’envergure ou d’une pandémie. C’est la raison pour laquelle de nouvelles approches thérapeutiques sont nécessaires. Un concept novateur est le repositionnement de molécules déjà sur le marché en exploitant leur capacité à inverser la réponse transcriptomique cellulaire de l’hôte infecté. En identifiant des molécules qui visent l’hôte et non le virus, cette stratégie permet d’avoir un large spectre d’action et d’être potentiellement actif sur de nouveaux variants. La mise en place de cette stratégie nécessite de caractériser les réponses cellulaires spécifiques de l’infection virale d’intérêt, de cribler in silico des molécules candidates, de les tester sur modèles cellulaires et animaux, avant d’envisager des essais cliniques chez l’homme. Nous présenterons cette démarche en prenant pour exemple l’infection grippale.
Collapse
Affiliation(s)
- J Poissy
- Université de médecine de Lille, F-59000 Lille, France.,2Pôle de réanimation, hôpital Salengro-CHRU de Lille, rue Emile-Laine, F-59037 Lille cedex, France
| | - O Terrier
- 3Laboratoire de virologie et pathologie humaine VirPath, université Claude-Bernard-Lyon-I (UCBL1), hospices civils de Lyon (HCL), International Center for Infectiology Research, Inserm (CIRI), U1111, CNRS, UMR5308, École normale supérieure de Lyon, faculté de médecine RTH Laennec, rue Guillaume-Paradin, F-69372 Lyon cedex 08, France
| | - B Lina
- 3Laboratoire de virologie et pathologie humaine VirPath, université Claude-Bernard-Lyon-I (UCBL1), hospices civils de Lyon (HCL), International Center for Infectiology Research, Inserm (CIRI), U1111, CNRS, UMR5308, École normale supérieure de Lyon, faculté de médecine RTH Laennec, rue Guillaume-Paradin, F-69372 Lyon cedex 08, France.,4Centre national de référence des virus influenza, CBPE, hospices civils de Lyon et Virpath, université Claude-Bernard-Lyon, F-69622 Villeurbanne cedex, France
| | - J Textoris
- 5Service d'anesthésie et de réanimation, hospices civils de Lyon, hôpital Édouard-Herriot, 5, place d'Arsonval, F-69437 Lyon cedex 03, France.,6Pathophysiology of Injury-Induced Immunosuppression (PI3), EA mixte hospices civils de Lyon, bioMérieux, université Claude-Bernard-Lyon-I (UCBL1), hôpital Édouard-Herriot, 5, place d'Arsonval, F-69437 Lyon cedex 03, France
| | - M Rosa-Calatrava
- 3Laboratoire de virologie et pathologie humaine VirPath, université Claude-Bernard-Lyon-I (UCBL1), hospices civils de Lyon (HCL), International Center for Infectiology Research, Inserm (CIRI), U1111, CNRS, UMR5308, École normale supérieure de Lyon, faculté de médecine RTH Laennec, rue Guillaume-Paradin, F-69372 Lyon cedex 08, France
| |
Collapse
|
3
|
McBeath AJA, Ho YM, Aamelfot M, Hall M, Christiansen DH, Markussen T, Falk K, Matejusova I. Low virulent infectious salmon anaemia virus (ISAV) replicates and initiates the immune response earlier than a highly virulent virus in Atlantic salmon gills. Vet Res 2014; 45:83. [PMID: 25143055 PMCID: PMC4144175 DOI: 10.1186/s13567-014-0083-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/24/2014] [Indexed: 01/12/2023] Open
Abstract
Observations from the field and experimental evidence suggest that different strains of infectious salmon anaemia virus (ISAV) can induce disease of varying severity in Atlantic salmon. Variation in host mortality and dissemination of ISAV isolates with high and low virulence was investigated using immersion challenge; from which mortality, pathological, immunohistochemical and preliminary molecular results have been previously published. Here, real-time RT-PCR analysis and statistical modelling have been used to further investigate variation in virus load and the response of four select immune genes. Expression of type I and II interferon (IFN), Mx and γIFN induced protein (γIP) to high and low pathogenic virus infection were examined in gill, heart and anterior kidney. In addition, a novel RNA species-specific assay targeting individual RNA types was used to investigate the separate viral processes of transcription and replication. Unexpectedly, the low virulent ISAV (LVI) replicated and transcribed more rapidly in the gills compared to the highly virulent virus (HVI). Subsequently LVI was able to disseminate to the internal organs more quickly and induced a more rapid systemic immune response in the host that may have offered some protection. Contrary to this, HVI initially progressed more slowly in the gills resulting in a slower generalised infection. However HVI ultimately reached a higher viral load and induced a greater mortality.
Collapse
Affiliation(s)
| | - Yee Mai Ho
- />Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland UK
| | | | - Malcolm Hall
- />Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland UK
| | | | | | - Knut Falk
- />Norwegian Veterinary Institute, Oslo, Norway
| | - Iveta Matejusova
- />Marine Scotland Science, Marine Laboratory, Aberdeen, Scotland UK
| |
Collapse
|
4
|
Bos LDJ, de Jong MD, Sterk PJ, Schultz MJ. How integration of global omics-data could help preparing for pandemics - a scent of influenza. Front Genet 2014; 5:80. [PMID: 24795745 PMCID: PMC4000993 DOI: 10.3389/fgene.2014.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/25/2014] [Indexed: 01/14/2023] Open
Abstract
Pandemics caused by novel emerging or re-emerging infectious diseases could lead to high mortality and morbidity world-wide when left uncontrolled. In this perspective, we evaluate the possibility of integration of global omics-data in order to timely prepare for pandemics. Such an approach requires two major innovations. First, data that is obtained should be shared with the global community instantly. The strength of rapid integration of simple signals is exemplified by Google's(TM) Flu Trend, which could predict the incidence of influenza-like illness based on online search engine queries. Second, omics technologies need to be fast and high-throughput. We postulate that analysis of the exhaled breath would be a simple, rapid and non-invasive alternative. Breath contains hundreds of volatile organic compounds that are altered by infection and inflammation. The molecular fingerprint of breath (breathprint) can be obtained using an electronic nose, which relies on sensor technology. These breathprints can be stored in an online database (a "breathcloud") and coupled to clinical data. Comparison of the breathprint of a suspected subject to the breathcloud allows for a rapid decision on the presence or absence of a pathogen.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
5
|
Kash JC, Xiao Y, Davis AS, Walters KA, Chertow DS, Easterbrook JD, Dunfee RL, Sandouk A, Jagger BW, Schwartzman LM, Kuestner RE, Wehr NB, Huffman K, Rosenthal RA, Ozinsky A, Levine RL, Doctrow SR, Taubenberger JK. Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice. Free Radic Biol Med 2014; 67:235-47. [PMID: 24140866 PMCID: PMC3927540 DOI: 10.1016/j.freeradbiomed.2013.10.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/16/2022]
Abstract
The 1918 influenza pandemic caused over 40 million deaths worldwide, with 675,000 deaths in the United States alone. Studies in several experimental animal models showed that 1918 influenza virus infection resulted in severe lung pathology associated with dysregulated immune and cell death responses. To determine if reactive oxygen species produced by host inflammatory responses play a central role in promoting severity of lung pathology, we treated 1918 influenza virus-infected mice with the catalytic catalase/superoxide dismutase mimetic, salen-manganese complex EUK-207 beginning 3 days postinfection. Postexposure treatment of mice infected with a lethal dose of the 1918 influenza virus with EUK-207 resulted in significantly increased survival and reduced lung pathology without a reduction in viral titers. In vitro studies also showed that EUK-207 treatment did not affect 1918 influenza viral replication. Immunohistochemical analysis showed a reduction in the detection of the apoptosis marker cleaved caspase-3 and the oxidative stress marker 8-oxo-2'-deoxyguanosine in lungs of EUK-207-treated animals compared to vehicle controls. High-throughput sequencing and RNA expression microarray analysis revealed that treatment resulted in decreased expression of inflammatory response genes and increased lung metabolic and repair responses. These results directly demonstrate that 1918 influenza virus infection leads to an immunopathogenic immune response with excessive inflammatory and cell death responses that can be limited by treatment with the catalytic antioxidant EUK-207.
Collapse
Affiliation(s)
- John C Kash
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yongli Xiao
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Sally Davis
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Daniel S Chertow
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Judith D Easterbrook
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca L Dunfee
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aline Sandouk
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett W Jagger
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Schwartzman
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Nancy B Wehr
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karl Huffman
- Pulmonary Center, Department of Medicine, Boston University Medical School, Boston, MA 02118, USA
| | - Rosalind A Rosenthal
- Pulmonary Center, Department of Medicine, Boston University Medical School, Boston, MA 02118, USA
| | | | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan R Doctrow
- Pulmonary Center, Department of Medicine, Boston University Medical School, Boston, MA 02118, USA
| | - Jeffery K Taubenberger
- Laboratory of Infectious Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Benecke A, Gale M, Katze MG. Dynamics of innate immunity are key to chronic immune activation in AIDS. Curr Opin HIV AIDS 2012; 7:79-85. [PMID: 22156845 DOI: 10.1097/coh.0b013e32834dde31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW We propose here that the dynamics rather than the structure of cellular and viral networks play a determining role in chronic immune activation of HIV-infected individuals. A number of novel avenues of experimental analysis and modeling strategies are discussed to conclusively address these network dynamics in the future. RECENT FINDINGS Recent insights into the molecular dynamics of immune activation and its control following simian immunodeficiency virus (SIV) infection in natural host primates has provided possible alternate interpretations of SIV and HIV pathogenesis. Concomitant with insights gained in other host-pathogen systems, as well as an increased understanding of innate immune activation mechanisms, these observations lead to a new model for the timing of innate HIV immune responses and a possible primordial role of this timing in programming chronic immune activation. SUMMARY Chronic immune activation is today considered the leading cause of AIDS in HIV-infected individuals. Systems biology has recently lent arguments for considering chronic immune activation a result of untimely innate immune responses by the host to the infection. Future strategies for the analysis, comprehension, and incorporation of the dynamic component of immune activation into HIV vaccination strategies are discussed.
Collapse
Affiliation(s)
- Arndt Benecke
- Institut des Hautes Etudes Scientifiques, Bures sur Yvette, VaccineResearch Institute, INSERM U955, Institut Mondor de Recherche Biomédicale, Créteil, France
| | | | | |
Collapse
|
7
|
Bray M, Lawler J, Paragas J, Jahrling PB, Mollura DJ. Molecular imaging of influenza and other emerging respiratory viral infections. J Infect Dis 2011; 203:1348-59. [PMID: 21422476 PMCID: PMC3080905 DOI: 10.1093/infdis/jir038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Research on the pathogenesis and therapy of influenza and other emerging respiratory viral infections would be aided by methods that directly visualize pathophysiologic processes in patients and laboratory animals. At present, imaging of diseases, such as swine-origin H1N1 influenza, is largely restricted to chest radiograph and computed tomography (CT), which can detect pulmonary structural changes in severely ill patients but are more limited in characterizing the early stages of illness, differentiating inflammation from infection or tracking immune responses. In contrast, imaging modalities, such as positron emission tomography, single photon emission CT, magnetic resonance imaging, and bioluminescence imaging, which have become useful tools for investigating the pathogenesis of a range of disease processes, could be used to advance in vivo studies of respiratory viral infections in patients and animals. Molecular techniques might also be used to identify novel biomarkers of disease progression and to evaluate new therapies.
Collapse
Affiliation(s)
- Mike Bray
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
8
|
Zhang L, Zhang X, Ma Q, Ma F, Zhou H. Transcriptomics and proteomics in the study of H1N1 2009. GENOMICS PROTEOMICS & BIOINFORMATICS 2011; 8:139-44. [PMID: 20970742 PMCID: PMC5054133 DOI: 10.1016/s1672-0229(10)60016-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza A virus (H1N1) 2009, a new swine-origin influenza A virus, has been spread worldwidely and caused great public fear. High-throughput transcriptomics and proteomics methods are now being used to identify H1N1 and H1N1-host interaction. This article reviews recent transcriptomics and proteomics research in H1N1 diagnosis, treatment, and H1N1 virus-host interaction, to offer some help for further understanding the infection mechanism and controlling H1N1 transmission.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- Corresponding authors.
| | - Xiaojun Zhang
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou 350025, China
| | - Qing Ma
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, NY 14260, USA
| | - Fang Ma
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Honghao Zhou
- Department of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha 410078, China
- Corresponding authors.
| |
Collapse
|
9
|
de Wit E, Feldmann H, Munster VJ. Tackling Ebola: new insights into prophylactic and therapeutic intervention strategies. Genome Med 2011; 3:5. [PMID: 21349211 PMCID: PMC3092090 DOI: 10.1186/gm219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its discovery in 1976, Ebolavirus has caused periodic outbreaks of viral hemorrhagic fever associated with severe and often fatal disease. Ebolavirus is endemic in Central Africa and the Philippines. Although there is currently no approved treatment available, the past 10 years has seen remarkable progress in our understanding of the pathogenicity of Ebolavirus and the development of prophylactic and post-exposure therapies against it. In vitro and in vivo experiments have shown that Ebolavirus pathogenicity is multifactorial, including viral and host determinants. Besides their function in the virus replication cycle, the viral glycoprotein, nucleoprotein, minor matrix protein and polymerase cofactor are viral determinants of pathogenicity, with evasion of the host innate and adaptive immune responses as the main mechanism. Although no licensed Ebolavirus vaccines are currently available, vaccine research in non-human primates, the 'gold standard' animal model for Ebolavirus, has produced several promising candidates. A combination of DNA vaccination and a recombinant adenovirus serotype 5 boost resulted in cross-protective immunity in non-human primates. A recombinant vesicular stomatitis vaccine vector protected non-human primates in pre- and post-exposure challenge studies. Several antiviral therapies are currently under investigation, but only a few of these have been tested in non-human primate models. Antisense therapies, in which oligonucleotides inhibit viral replication, have shown promising results in non-human primates following post-exposure treatment. In light of the severity of Ebolavirus disease and the observed increase in Ebolavirus outbreaks over the past decade, the expedited translation of potential candidate therapeutics and vaccines from bench to bedside is currently the most challenging task for the field. Here, we review the current state of Ebolavirus research, with emphasis on prophylactic and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, 903 South 4th Street, MT 59840, USA.
| | | | | |
Collapse
|
10
|
Josset L, Textoris J, Loriod B, Ferraris O, Moules V, Lina B, N'Guyen C, Diaz JJ, Rosa-Calatrava M. Gene expression signature-based screening identifies new broadly effective influenza a antivirals. PLoS One 2010; 5. [PMID: 20957181 PMCID: PMC2949399 DOI: 10.1371/journal.pone.0013169] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/09/2010] [Indexed: 12/11/2022] Open
Abstract
Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation, alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression-based screening can be used to identify antivirals. Such an approach could accelerate drug discovery and be extended to other pathogens.
Collapse
Affiliation(s)
- Laurence Josset
- Centre National de la Recherche Scientifique (CNRS) FRE 3011 Virologie et Pathologie Humaine, Université Lyon 1, Lyon, France
- Laboratoire de Virologie Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
- * E-mail: (LJ); (MRC)
| | - Julien Textoris
- Institut National de la Santé et de la Recherche Médicale (INSERM) U928 Technologies Avancées pour le Génome et la Clinique, Université de la Méditerranée, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR 5534, Centre Léon Bérard, Centre de Génétique Moléculaire et Cellulaire, Université Lyon 1, Lyon, France
- Service d'anesthésie et de réanimation Hôpital Nord, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Béatrice Loriod
- Institut National de la Santé et de la Recherche Médicale (INSERM) U928 Technologies Avancées pour le Génome et la Clinique, Université de la Méditerranée, Marseille, France
| | - Olivier Ferraris
- Centre National de la Recherche Scientifique (CNRS) FRE 3011 Virologie et Pathologie Humaine, Université Lyon 1, Lyon, France
| | - Vincent Moules
- Centre National de la Recherche Scientifique (CNRS) FRE 3011 Virologie et Pathologie Humaine, Université Lyon 1, Lyon, France
| | - Bruno Lina
- Centre National de la Recherche Scientifique (CNRS) FRE 3011 Virologie et Pathologie Humaine, Université Lyon 1, Lyon, France
- Laboratoire de Virologie Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Catherine N'Guyen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U928 Technologies Avancées pour le Génome et la Clinique, Université de la Méditerranée, Marseille, France
| | - Jean-Jacques Diaz
- Centre National de la Recherche Scientifique (CNRS) UMR 5534, Centre Léon Bérard, Centre de Génétique Moléculaire et Cellulaire, Université Lyon 1, Lyon, France
| | - Manuel Rosa-Calatrava
- Centre National de la Recherche Scientifique (CNRS) FRE 3011 Virologie et Pathologie Humaine, Université Lyon 1, Lyon, France
- * E-mail: (LJ); (MRC)
| |
Collapse
|
11
|
Power KA, Fitzgerald KT, Gallagher WM. Examination of cell–host–biomaterial interactions via high-throughput technologies: A re-appraisal. Biomaterials 2010; 31:6667-74. [DOI: 10.1016/j.biomaterials.2010.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/17/2010] [Indexed: 01/08/2023]
|