1
|
Sen M, Eroğul Ö. Retinoic Acid Neutralizes the Effects of Herpes Simplex Virus Type 1-Infected Cell Protein 0 (ICP0) in Retinal Pigment Epithelial Cells. Cureus 2024; 16:e61089. [PMID: 38919217 PMCID: PMC11196970 DOI: 10.7759/cureus.61089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) infection of the cornea, uvea, and retina is the leading infectious cause of blindness worldwide. This study examined the effects of retinoic acid (RA) on the protein levels of interleukin (IL)-17A and IL-23 cytokines with known proinflammatory effects and toll-like receptor 3 (TLR3) messenger RNA (mRNA) expression in retinal pigment epithelial (ARPE-19) cells treated with HSV-1-infected cell protein 0 (ICP0). METHODOLOGY We used 3-[4.5-dimethylthiazol-2-yl]-2.5-diphenyl tetrazolium bromide assay to calculate the half maximal inhibitory concentration (IC50) doses of RA and ICP0 in ARPE-19 cells. At the end of 24 hours, protein levels of IL-17A and IL-23 were analyzed using enzyme-linked immunosorbent assay. TLR3 mRNA expression levels were also calculated using reverse transcription-polymerase chain reaction (RT-PCR). RESULTS RA administration decreased IL-17A levels, which were elevated by ICP0. The IL-23 levels were similar between the ICP0-treated and control groups, but the difference was significant between the ICP0-treated group and RA+ICP0 combination. These results showed that RA can significantly increase IL-23 levels in the presence of ICP0. Although ICP0 dramatically increased TLR3 mRNA expression compared with that in the control group, the RA+ICP0 combination returned TLR3 mRNA expression to a level similar to that in the control group (P = 0.419). CONCLUSIONS RA may potentially neutralize HSV-1 ICP0 negative effects in ARPE-19 cells.
Collapse
Affiliation(s)
- Merve Sen
- Department of Medical Services and Techniques, Suhut Vocational School of Health Services, Afyonkarahısar Health Sciences University, Afyonkarahisar, TUR
| | - Özgür Eroğul
- Department of Opthalmology, Faculty of Medicine, Afyonkarahisar Health Science University, Afyonkarahisar, TUR
| |
Collapse
|
2
|
Timotievich ED, Shilovskiy IP, Khaitov MR. Cell-Penetrating Peptides as Vehicles for Delivery of Therapeutic Nucleic Acids. Mechanisms and Application in Medicine. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1800-1817. [PMID: 38105200 DOI: 10.1134/s0006297923110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023]
Abstract
Currently, nucleic acid therapeutics are actively developed for the treatment and prophylactic of metabolic disorders and oncological, inflammatory, and infectious diseases. A growing number of approved nucleic acid-based drugs evidences a high potential of gene therapy in medicine. Therapeutic nucleic acids act in the cytoplasm, which makes the plasma membrane the main barrier for the penetration of nucleic acid-based drugs into the cell and requires development of special vehicles for their intracellular delivery. The optimal carrier should not only facilitate internalization of nucleic acids, but also exhibit no toxic effects, ensure stabilization of the cargo molecules, and be suitable for a large-scale and low-cost production. Cell-penetrating peptides (CPPs), which match all these requirements, were found to be efficient and low-toxic carriers of nucleic acids. CPPs are typically basic peptides with a positive charge at physiological pH that can form nanostructures with negatively charged nucleic acids. The prospects of CPPs as vehicles for the delivery of therapeutic nucleic acids have been demonstrated in numerous preclinical studies. Some CPP-based drugs had successfully passed clinical trials and were implemented into medical practice. In this review, we described different types of therapeutic nucleic acids and summarized the data on the use of CPPs for their intracellular delivery, as well as discussed, the mechanisms of CPP uptake by the cells, as understanding of these mechanisms can significantly accelerate the development of new gene therapy approaches.
Collapse
Affiliation(s)
- Ekaterina D Timotievich
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia
| | - Igor P Shilovskiy
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| | - Musa R Khaitov
- Institute of Immunology, National Research Center, Federal Medical-Biological Agency of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
3
|
Khairkhah N, Namvar A, Bolhassani A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023; 65:1387-1402. [PMID: 36719639 PMCID: PMC9888354 DOI: 10.1007/s12033-023-00679-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Zheng K, Ren Z, Wang Y. Serine-arginine protein kinases and their targets in viral infection and their inhibition. Cell Mol Life Sci 2023; 80:153. [PMID: 37198350 PMCID: PMC10191411 DOI: 10.1007/s00018-023-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
5
|
Antiviral Peptide-Based Conjugates: State of the Art and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020357. [PMID: 36839679 PMCID: PMC9958607 DOI: 10.3390/pharmaceutics15020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Infectious diseases caused by microbial pathogens (bacteria, virus, fungi, parasites) claim millions of deaths per year worldwide and have become a serious challenge to global human health in our century. Viral infections are particularly notable in this regard, not only because humankind is facing some of the deadliest viral pandemics in recent history, but also because the arsenal of drugs to combat the high levels of mutation, and hence the antigenic variability of (mostly RNA) viruses, is disturbingly scarce. Therefore, the search for new antivirals able to successfully fight infection with minimal or no adverse effects on the host is a pressing task. Traditionally, antiviral therapies have relied on relatively small-sized drugs acting as proteases, polymerases, integrase inhibitors, etc. In recent decades, novel approaches involving targeted delivery such as that achieved by peptide-drug conjugates (PDCs) have gained attention as alternative (pro)drugs for tackling viral diseases. Antiviral PDC therapeutics typically involve one or more small drug molecules conjugated to a cell-penetrating peptide (CPP) carrier either directly or through a linker. Such integration of two bioactive elements into a single molecular entity is primarily aimed at achieving improved bioavailability in conditions where conventional drugs are challenged, but may also turn up novel unexpected functionalities and applications. Advances in peptide medicinal chemistry have eased the way to antiviral PDCs, but challenges remain on the way to therapeutic success. In this paper, we review current antiviral CPP-drug conjugates (antiviral PDCs), with emphasis on the types of CPP and antiviral cargo. We integrate the conjugate and the chemical approaches most often applied to combine both entities. Additionally, we comment on various obstacles faced in the design of antiviral PDCs and on the future outlooks for this class of antiviral therapeutics.
Collapse
|
6
|
Matsuoka S, Petri G, Larson K, Behnke A, Wang X, Peng M, Spagnoli S, Lohr C, Milston-Clements R, Divilov K, Jin L. Evaluation of Histone Demethylase Inhibitor ML324 and Acyclovir against Cyprinid herpesvirus 3 Infection. Viruses 2023; 15:163. [PMID: 36680202 PMCID: PMC9863241 DOI: 10.3390/v15010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) can cause severe disease in koi and common carp (Cyprinus carpio). Currently, no effective treatment is available against CyHV-3 infection in koi. Both LSD1 and JMJD2 are histone demethylases (HD) and are critical for immediate-early (IE) gene activation essential for lytic herpesvirus replication. OG-L002 and ML324 are newly discovered specific inhibitors of LSD1 and JMJD2, respectively. Here, HD inhibitors were compared with acyclovir (ACV) against CyHV-3 infection in vitro and in vivo. ML324, at 20-50 µM, can completely block ~1 × 103 PFU CyHV-3 replication in vitro, while OG-L002 at 20 µM and 50 µM can produce 96% and 98% inhibition, respectively. Only about 94% inhibition of ~1 × 103 PFU CyHV-3 replication was observed in cells treated with ACV at 50 µM. As expected, CyHV-3 IE gene transcription of ORF139 and ORF155 was blocked within 72 h post-infection (hpi) in the presence of 20 µM ML324. No detectable cytotoxicity was observed in KF-1 or CCB cells treated for 24 h with 1 to 50 µM ML324. A significant reduction of CyHV-3 replication was observed in ~6-month-old infected koi treated with 20 µM ML324 in an immersion bath for 3-4 h at 1-, 3-, and 5-days post-infection compared to the control and ACV treatments. Under heat stress, 50-70% of 3-4-month-old koi survived CyHV-3 infection when they were treated daily with 20 µM ML324 in an immersion bath for 3-4 h within the first 5 d post-infection (dpi), compared to 11-19% and 22-27% of koi in the control and ACV treatments, respectively. Our study demonstrates that ML324 has the potential to be used against CyHV-3 infection in koi.
Collapse
Affiliation(s)
- Shelby Matsuoka
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Gloria Petri
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Kristen Larson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Alexandra Behnke
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Xisheng Wang
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Muhui Peng
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Sean Spagnoli
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane Lohr
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Ruth Milston-Clements
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Konstantin Divilov
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR 97365, USA
| | - Ling Jin
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Potential of cell-penetrating peptides (CPPs) in delivery of antiviral therapeutics and vaccines. Eur J Pharm Sci 2021; 169:106094. [PMID: 34896590 DOI: 10.1016/j.ejps.2021.106094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Viral infections are a great threat to human health. Currently, there are no effective vaccines and antiviral drugs against the majority of viral diseases, suggesting the need to develop novel and effective antiviral agents. Since the intracellular delivery of antiviral agents, particularly the impermeable molecules, such as peptides, proteins, and nucleic acids, are essential to exert their therapeutic effects, using a delivery system is highly required. Among various delivery systems, cell-penetrating peptides (CPPs), a group of short peptides with the unique ability of crossing cell membrane, offer great potential for the intracellular delivery of various biologically active cargoes. The results of numerous in vitro and in vivo studies with CPP conjugates demonstrate their promise as therapeutic agents in various medical fields including antiviral therapy. The CPP-mediated delivery of various antiviral agents including peptides, proteins, nucleic acids, and nanocarriers have been associated with therapeutic efficacy both in vitro and in vivo. This review describes various aspects of viruses including their biology, pathogenesis, and therapy and briefly discusses the concept of CPP and its potential in drug delivery. Particularly, it will highlight a variety of CPP applications in the management of viral infections.
Collapse
|
8
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
9
|
Jin L, Black W, Sawyer T. Application of Environment-Friendly Rhamnolipids against Transmission of Enveloped Viruses Like SARS-CoV2. Viruses 2021; 13:v13020322. [PMID: 33672561 PMCID: PMC7924030 DOI: 10.3390/v13020322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
In the face of new emerging respiratory viruses, such as SARS-CoV2, vaccines and drug therapies are not immediately available to curb the spread of infection. Non-pharmaceutical interventions, such as mask-wearing and social distance, can slow the transmission. However, both mask and social distance have not prevented the spread of respiratory viruses SARS-CoV2 within the US. There is an urgent need to develop an intervention that could reduce the spread of respiratory viruses. The key to preventing transmission is to eliminate the emission of SARS-CoV2 from an infected person and stop the virus from propagating in the human population. Rhamnolipids are environmentally friendly surfactants that are less toxic than the synthetic surfactants. In this study, rhamnolipid products, 222B, were investigated as disinfectants against enveloped viruses, such as bovine coronavirus and herpes simplex virus 1 (HSV-1). The 222B at 0.009% and 0.0045% completely inactivated 6 and 4 log PFU/mL of HSV-1 in 5–10 min, respectively. 222B at or below 0.005% is also biologically safe. Moreover, 50 μL of 222B at 0.005% on ~1 cm2 mask fabrics or plastic surface can inactivate ~103 PFU HSV-1 in 3–5 min. These results suggest that 222B coated on masks or plastic surface can reduce the emission of SARS-CoV2 from an infected person and stop the spread of SARS-CoV2.
Collapse
Affiliation(s)
- Ling Jin
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Correspondence: ; Tel.: +1-541-737-9893
| | - Wendy Black
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA;
| | - Teresa Sawyer
- Electron Microscopy Facility, 145 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
10
|
Di Iorio E, Barbaro V, Alvisi G, Trevisan M, Ferrari S, Masi G, Nespeca P, Ghassabian H, Ponzin D, Palù G. New Frontiers of Corneal Gene Therapy. Hum Gene Ther 2019; 30:923-945. [PMID: 31020856 DOI: 10.1089/hum.2019.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Corneal diseases are among the most prevalent causes of blindness worldwide. The transparency and clarity of the cornea are guaranteed by a delicate physiological, anatomic, and functional balance. For this reason, all the disorders, including those of genetic origin, that compromise this state of harmony can lead to opacity and eventually vision loss. Many corneal disorders have a genetic etiology, and some are associated with rather rare and complex syndromes. Conventional treatments, such as corneal transplantation, are often ineffective, and to date, many of these disorders are still incurable. Gene therapy carries the promise of being a potential cure for many of these diseases, with solutions and strategies that did not seem possible until a few years ago. With its potential to treat genetic disease by means of deletion, replacement, or editing of a defective gene, the challenge can also be extended to corneal disorders in order to achieve long-term, if not definitive, relief. The aim of this paper is to review the state of the art of the different gene therapy approaches as potential treatments for corneal diseases and the future perspectives for the development of personalized gene-based medicine.
Collapse
Affiliation(s)
- Enzo Di Iorio
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Vanessa Barbaro
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Gualtiero Alvisi
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Marta Trevisan
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Stefano Ferrari
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Giulia Masi
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Patrizia Nespeca
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Hanieh Ghassabian
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Diego Ponzin
- 2Fondazione Banca Degli Occhi Del Veneto Onlus, Zelarino, Venezia, Italy
| | - Giorgio Palù
- 1Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Hoffmann HH, Schneider WM, Blomen VA, Scull MA, Hovnanian A, Brummelkamp TR, Rice CM. Diverse Viruses Require the Calcium Transporter SPCA1 for Maturation and Spread. Cell Host Microbe 2018; 22:460-470.e5. [PMID: 29024641 DOI: 10.1016/j.chom.2017.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/05/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Respiratory and arthropod-borne viral infections are a global threat due to the lack of effective antivirals and vaccines. A potential strategy is to target host proteins required for viruses but non-essential for the host. To identify such proteins, we performed a genome-wide knockout screen in human haploid cells and identified the calcium pump SPCA1. SPCA1 is required by viruses from the Paramyxoviridae, Flaviviridae, and Togaviridae families, including measles, dengue, West Nile, Zika, and chikungunya viruses. Calcium transport activity is required for SPCA1 to promote virus spread. SPCA1 regulates proteases within the trans-Golgi network that require calcium for their activity and are critical for virus glycoprotein maturation. Consistent with these findings, viral glycoproteins fail to mature in SPCA1-deficient cells preventing viral spread, which is evident even in cells with partial loss of SPCA1. Thus, SPCA1 is an attractive antiviral host target for a broad spectrum of established and emerging viral infections.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vincent A Blomen
- Biochemistry Division, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Margaret A Scull
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Alain Hovnanian
- INSERM UMR 1163 and Imagine Institute, 75015 Paris, France; Université Paris V Descartes - Sorbonne Paris Cité, 75006 Paris, France; Department of Genetics, Necker Hospital, 75015 Paris, France
| | - Thijn R Brummelkamp
- Biochemistry Division, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Cancer Genomics Centre, 3584 CG Utrecht, The Netherlands
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
12
|
Nan Y, Zhang YJ. Antisense Phosphorodiamidate Morpholino Oligomers as Novel Antiviral Compounds. Front Microbiol 2018; 9:750. [PMID: 29731743 PMCID: PMC5920040 DOI: 10.3389/fmicb.2018.00750] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/03/2018] [Indexed: 01/23/2023] Open
Abstract
Phosphorodiamidate morpholino oligomers (PMO) are short single-stranded DNA analogs that are built upon a backbone of morpholine rings connected by phosphorodiamidate linkages. As uncharged nucleic acid analogs, PMO bind to complementary sequences of target mRNA by Watson–Crick base pairing to block protein translation through steric blockade. PMO interference of viral protein translation operates independently of RNase H. Meanwhile, PMO are resistant to a variety of enzymes present in biologic fluids, a characteristic that makes them highly suitable for in vivo applications. Notably, PMO-based therapy for Duchenne muscular dystrophy (DMD) has been approved by the United States Food and Drug Administration which is now a hallmark for PMO-based antisense therapy. In this review, the development history of PMO, delivery methods for improving cellular uptake of neutrally charged PMO molecules, past studies of PMO antagonism against RNA and DNA viruses, PMO target selection, and remaining questions of PMO antiviral strategies are discussed in detail and new insights are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Yan-Jin Zhang
- Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
13
|
Pachota M, Klysik K, Synowiec A, Ciejka J, Szczubiałka K, Pyrć K, Nowakowska M. Inhibition of Herpes Simplex Viruses by Cationic Dextran Derivatives. J Med Chem 2017; 60:8620-8630. [DOI: 10.1021/acs.jmedchem.7b01189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Magdalena Pachota
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Katarzyna Klysik
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aleksandra Synowiec
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Justyna Ciejka
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Krzysztof Pyrć
- Microbiology
Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Maria Nowakowska
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
14
|
The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res 2017; 40:623-630. [DOI: 10.1007/s12272-017-0898-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
|
15
|
Hung PY, Ho BC, Lee SY, Chang SY, Kao CL, Lee SS, Lee CN. Houttuynia cordata targets the beginning stage of herpes simplex virus infection. PLoS One 2015; 10:e0115475. [PMID: 25643242 PMCID: PMC4314066 DOI: 10.1371/journal.pone.0115475] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/24/2014] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV), a common latent virus in humans, causes certain severe diseases. Extensive use of acyclovir (ACV) results in the development of drug-resistant HSV strains, hence, there is an urgent need to develop new drugs to treat HSV infection. Houttuynia cordata (H. cordata), a natural herbal medicine, has been reported to exhibit anti-HSV effects which is partly NF-κB-dependent. However, the molecular mechanisms by which H. cordata inhibits HSV infection are not elucidated thoroughly. Here, we report that H. cordata water extracts (HCWEs) inhibit the infection of HSV-1, HSV-2, and acyclovir-resistant HSV-1 mainly via blocking viral binding and penetration in the beginning of infection. HCWEs also suppress HSV replication. Furthermore, HCWEs attenuate the first-wave of NF-κB activation, which is essential for viral gene expressions. Further analysis of six compounds in HCWEs revealed that quercetin and isoquercitrin inhibit NF-κB activation and additionally, quercetin also has an inhibitory effect on viral entry. These results indicate that HCWEs can inhibit HSV infection through multiple mechanisms and could be a potential lead for development of new drugs for treating HSV.
Collapse
MESH Headings
- Acyclovir/pharmacology
- Animals
- Antiviral Agents/isolation & purification
- Antiviral Agents/pharmacology
- Cell Line
- Drug Resistance, Viral/drug effects
- Gene Expression Regulation, Viral/drug effects
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/drug effects
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/metabolism
- Herpesvirus 2, Human/physiology
- Hot Temperature
- Houttuynia/chemistry
- Humans
- NF-kappa B/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Viral Envelope Proteins/metabolism
- Virion/drug effects
- Virion/physiology
- Virus Internalization/drug effects
- Virus Replication/drug effects
- Water/chemistry
Collapse
Affiliation(s)
- Pei-Yun Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Bing-Ching Ho
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Szu-Yuan Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chuan-Liang Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shoei-Sheng Lee
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chun-Nan Lee
- Department of Clinical Laboratory Sciences and Medical Biotechnology College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Lee G, Yu J, Cho S, Byun SJ, Kim DH, Lee TK, Kwon MH, Lee S. A nucleic-acid hydrolyzing single chain antibody confers resistance to DNA virus infection in hela cells and C57BL/6 mice. PLoS Pathog 2014; 10:e1004208. [PMID: 24968358 PMCID: PMC4072776 DOI: 10.1371/journal.ppat.1004208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/12/2014] [Indexed: 01/19/2023] Open
Abstract
Viral protein neutralizing antibodies have been developed but they are limited only to the targeted virus and are often susceptible to antigenic drift. Here, we present an alternative strategy for creating virus-resistant cells and animals by ectopic expression of a nucleic acid hydrolyzing catalytic 3D8 single chain variable fragment (scFv), which has both DNase and RNase activities. HeLa cells (SCH7072) expressing 3D8 scFv acquired significant resistance to DNA viruses. Virus challenging with Herpes simplex virus (HSV) in 3D8 scFv transgenic cells and fluorescence resonance energy transfer (FRET) assay based on direct DNA cleavage analysis revealed that the induced resistance in HeLa cells was acquired by the nucleic acid hydrolyzing catalytic activity of 3D8 scFv. In addition, pseudorabies virus (PRV) infection in WT C57BL/6 mice was lethal, whereas transgenic mice (STG90) that expressed high levels of 3D8 scFv mRNA in liver, muscle, and brain showed a 56% survival rate 5 days after PRV intramuscular infection. The antiviral effects against DNA viruses conferred by 3D8 scFv expression in HeLa cells as well as an in vivo mouse system can be attributed to the nuclease activity that inhibits viral genome DNA replication in the nucleus and/or viral mRNA translation in the cytoplasm. Our results demonstrate that the nucleic-acid hydrolyzing activity of 3D8 scFv confers viral resistance to DNA viruses in vitro in HeLa cells and in an in vivo mouse system. Most strategies for developing virus-resistant transgenic cells and animals are based on the concept of virus-derived resistance, in which dysfunctional virus-derived products are expressed to interfere with the pathogenic process of the virus in transgenic cells or animals. However, these viral protein targeting approaches are limited because they only target specific viruses and are susceptible to viral mutations. We describe a novel strategy that targets the viral genome itself, rather than viral gene products, to generate virus-resistant transgenic cells and animals. We functionally expressed 3D8 scFv which has both DNase and RNase activities, in HeLa cells and transgenic mice. We found that the transgenic cells and mice acquired complete resistance to two DNA viruses (HSV and PRV) without accumulating the virus, and showed delayed onset of disease symptoms. The antiviral effects against DNA viruses demonstrated in this study were caused by (1) DNase activity of 3D8 scFv in the nucleus, which inhibited DNA replication or RNA transcription and (2) 3D8 scFv RNase activity in the cytoplasm, which blocked protein translation. This strategy may facilitate control of a broad spectrum of viruses, including viruses uncharacterized at the molecular level, regardless of their genome type or variations in gene products.
Collapse
Affiliation(s)
- Gunsup Lee
- Department of Genetic Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Korea
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Korea
| | - Jaelim Yu
- Department of Genetic Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Korea
| | - Seungchan Cho
- Department of Genetic Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Korea
| | - Sung-June Byun
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Korea
| | - Dae Hyun Kim
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Korea
| | - Taek-Kyun Lee
- South Sea Environment Research Department, Korea Institute of Ocean Science and Technology, Geoje, Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, San 5, Woncheon-dong, Yeongtong-gu, Suwon, Korea
| | - Sukchan Lee
- Department of Genetic Engineering, Sungkyunkwan University, Jangan-gu, Suwon, Korea
- * E-mail: ,
| |
Collapse
|
17
|
Tan CW, Chan YF, Quah YW, Poh CL. Inhibition of enterovirus 71 infection by antisense octaguanidinium dendrimer-conjugated morpholino oligomers. Antiviral Res 2014; 107:35-41. [PMID: 24769243 PMCID: PMC7118997 DOI: 10.1016/j.antiviral.2014.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/25/2014] [Accepted: 04/13/2014] [Indexed: 12/11/2022]
Abstract
Enterovirus 71 (EV-71) infections are generally manifested as mild hand, foot and mouth disease, but have been reported to cause severe neurological complications with high mortality rates. Treatment options remain limited due to the lack of antivirals. Octaguanidinium-conjugated morpholino oligomers (vivo-MOs) are single-stranded DNA-like antisense agents that can readily penetrate cells and reduce gene expression by steric blocking of complementary RNA sequences. In this study, inhibitory effects of three vivo-MOs that are complementary to the EV-71 internal ribosome entry site (IRES) and the RNA-dependent RNA polymerase (RdRP) were tested in RD cells. Vivo-MO-1 and vivo-MO-2 targeting the EV-71 IRES showed significant viral plaque reductions of 2.5 and 3.5 log10PFU/ml, respectively. Both vivo-MOs reduced viral RNA copies and viral capsid expression in RD cells in a dose-dependent manner. In contrast, vivo-MO-3 targeting the EV-71 RdRP exhibited less antiviral activity. Both vivo-MO-1 and 2 remained active when administered either 4h before or within 6h after EV-71 infection. Vivo-MO-2 exhibited antiviral activities against poliovirus (PV) and coxsackievirus A16 but vivo-MO-1 showed no antiviral activities against PV. Both the IRES-targeting vivo-MO-1 and vivo-MO-2 inhibit EV-71 RNA translation. Resistant mutants arose after serial passages in the presence of vivo-MO-1, but none were isolated against vivo-MO-2. A single T to C substitution at nucleotide position 533 was sufficient to confer resistance to vivo-MO-1. Our findings suggest that IRES-targeting vivo-MOs are good antiviral candidates for treating early EV-71 infection, and vivo-MO-2 is a more favorable candidate with broader antiviral spectrum against enteroviruses and are refractory to antiviral resistance.
Collapse
Affiliation(s)
- Chee Wah Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yoke Fun Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Tropical Infectious Disease Research and Education Center, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yi Wan Quah
- Faculty of Science and Technology, Sunway University, 46150 Petaling Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Faculty of Science and Technology, Sunway University, 46150 Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
18
|
Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov Today 2014; 19:1309-21. [PMID: 24598791 DOI: 10.1016/j.drudis.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
Aptamers have emerged as a novel and powerful class of biomolecules with an immense untapped potential. The ability to synthesise highly specific aptamers against any molecular target make them a vital cog in the design of effective therapeutics for the future. However, only a minutia of the enormous potential of this dynamic class of molecule has been exploited. Several aptamers have been studied for the treatment of eye-related disorders, and one such strategy has been successful in therapy. This review gives an account of several eye diseases and their regulatory biomolecules where other nucleic acid therapeutics have been attempted with limited success and how aptamers, with their exceptional flexibility to chemical modifications, can overcome those inherent shortcomings.
Collapse
|
19
|
Targeting herpetic keratitis by gene therapy. J Ophthalmol 2012; 2012:594869. [PMID: 23326647 PMCID: PMC3541562 DOI: 10.1155/2012/594869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/30/2012] [Indexed: 01/15/2023] Open
Abstract
Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1) can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.
Collapse
|
20
|
Therapeutic delivery opportunities, obstacles and applications for cell-penetrating peptides. Ther Deliv 2012; 2:71-82. [PMID: 22833926 DOI: 10.4155/tde.10.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advancements in the development of large bioactive molecules as therapeutic agents have made drug delivery an active and important field of research. Cell-penetrating peptides (CPPs) have the ability to deliver an array of molecules and even nano-size particles into cells in an efficient and non-toxic manner, both in vitro and in vivo. This review aims to give a perspective on the obstacles that CPP-mediated drug delivery is currently facing as well as the great opportunities for improvements that lie ahead. Strategies for delivery of novel gene-modulating agents and enhancing efficacy of classical drugs will be discussed, as well as methods for increasing bioavailability and tissue specificity of CPPs. The usefulness and potential of CPPs as therapeutic drug-delivery vectors will be exemplified by their use in the treatment of cancer, viral infection and muscular dystrophy.
Collapse
|
21
|
Warren TK, Shurtleff AC, Bavari S. Advanced morpholino oligomers: a novel approach to antiviral therapy. Antiviral Res 2012; 94:80-8. [PMID: 22353544 PMCID: PMC7114334 DOI: 10.1016/j.antiviral.2012.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 01/21/2023]
Abstract
Phosphorodiamidate morpholino oligomers (PMOs) are synthetic antisense oligonucleotide analogs that are designed to interfere with translational processes by forming base-pair duplexes with specific RNA sequences. Positively charged PMOs (PMOplus™) are effective for the postexposure protection of two fulminant viral diseases, Ebola and Marburg hemorrhagic fever in nonhuman primates, and this class of antisense agent may also have possibilities for treatment of other viral diseases. PMOs are highly stable, are effective by a variety of routes of administration, can be readily formulated in common isotonic delivery vehicles, and can be rapidly designed and synthesized. These are properties which may make PMOs good candidates for use during responses to emerging or reemerging viruses that may be insensitive to available therapies or for use during outbreaks, especially in regions that lack a modern medical infrastructure. While the efficacy of sequence-specific therapies can be limited by target-site sequence variations that occur between variants or by the emergence of resistant mutants during infections, various PMO design strategies can minimize these impacts. These strategies include the use of promiscuous bases such as inosine to compensate for predicted base-pair mismatches, the use of sequences that target conserved sites between viral strains, and the use of sequences that target host products that viruses utilize for infection.
Collapse
Affiliation(s)
| | | | - Sina Bavari
- Corresponding author. Tel.: +1 301 619 4246.
| |
Collapse
|
22
|
Opriessnig T, Patel D, Wang R, Halbur PG, Meng XJ, Stein DA, Zhang YJ. Inhibition of porcine reproductive and respiratory syndrome virus infection in piglets by a peptide-conjugated morpholino oligomer. Antiviral Res 2011; 91:36-42. [PMID: 21554902 DOI: 10.1016/j.antiviral.2011.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 04/14/2011] [Accepted: 04/22/2011] [Indexed: 01/07/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes substantial economic losses to the swine industry in many countries, and current control strategies are inadequate. Previously, we explored the strategy of using peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) to inhibit PRRS virus (PRRSV) replication. PPMOs are nuclease-resistant and single-stranded DNA analogs containing a modified backbone conjugated to a cell-penetrating peptide and can act as antisense agents through steric blockade of complementary messenger RNA. A PPMO (designated 5UP2) targeting highly conserved sequence in the 5'-terminal region of the PRRSV genome was found to produce multi-log10 inhibition of PRRSV replication in cultured cells. To evaluate 5UP2 in vivo, we here administrated the PPMO to 3-week-old piglets via intranasal instillation at 24h before, and 2 and 24h after infection with PRRSV (strain VR2385). Blood samples were collected at 6, 10 and 14 days post-infection (dpi) for detection of PRRSV RNA and antibodies. Necropsy was performed at 14 dpi. Monitoring weight gain in all piglet groups throughout the experiment indicated that PPMO was well tolerated at the doses used. PPMO 5UP2 treatment significantly reduced PRRSV viremia at 6 dpi. On day 14, piglets receiving 5UP2 had significantly less interstitial pneumonia and lower level of anti-PRRSV antibodies than untreated piglets. In alveolar macrophages isolated at the time of necropsy, the expression of antiviral genes in PPMO-treated piglets was elevated in comparison with untreated. This study provides further data indicating that the 5UP2 PPMO can be considered a candidate component for a novel PRRS control strategy.
Collapse
Affiliation(s)
- Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Eide K, Moerdyk-Schauwecker M, Stein DA, Bildfell R, Koelle DM, Jin L. Reduction of herpes simplex virus type-2 replication in cell cultures and in rodent models with peptide-conjugated morpholino oligomers. Antivir Ther 2011; 15:1141-9. [PMID: 21149921 DOI: 10.3851/imp1694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Genital herpes, caused by herpes simplex virus type-2 (HSV-2), is a recurrent, lifelong disease affecting tens of millions of people in the USA alone. HSV-2 can be treated therapeutically with acyclovir (ACV) and its derivatives; however, no treatment can prevent HSV reactivation. Novel topical anti-HSV microbicides are much needed to reduce HSV-2 transmission and to treat primary or reactivated infections, especially for ACV-resistant strains. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) are single-stranded DNA analogues that enter cells readily and can reduce target gene expression through steric blockage of complementary messenger RNA (mRNA). METHODS We investigated the antiviral activities of PPMOs targeted to the translation start-site regions of the mRNA for two HSV-2 immediate early genes, immediate early protein (ICP)0 and ICP27, and two early genes, unique long gene (UL)30 and UL39. RESULTS In cell cultures, PPMOs targeting ICP0 or ICP27 mRNA were found to be highly effective against two strains of HSV-2, one of which was ACV-resistant. In vivo, daily topical applications of up to 1 mM ICP27 PPMO caused no gross or microscopic damage to the genital tract of uninfected BALB/c mice or cotton rats. Cotton rats receiving topical application of ICP27 PPMO 24 h after HSV-2 inoculation showed a reduction in genital lesions and a 37.5% reduction in mortality at 14 days post-infection. Mice receiving topical application of 100 μM of an ICP27 and ICP0 PPMO combination before HSV-2 inoculation had no detectable viral replication in the genital tract at 3-5 days post-infection. CONCLUSIONS These results demonstrate that topically applied PPMOs hold promise as candidate antiviral microbicides against HSV-2 genital infection.
Collapse
Affiliation(s)
- Kathleen Eide
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | | | | | | | | | | |
Collapse
|
24
|
Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J Virol 2010; 85:1554-62. [PMID: 21123387 DOI: 10.1128/jvi.01294-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Influenza A viruses constitute a major and ongoing global public health concern. Current antiviral strategies target viral gene products; however, the emergence of drug-resistant viruses highlights the need for novel antiviral approaches. Cleavage of the influenza virus hemagglutinin (HA) by host cell proteases is crucial for viral infectivity and therefore presents a potential drug target. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) are single-stranded-DNA-like antisense agents that readily enter cells and can act as antisense agents by sterically blocking cRNA. Here, we evaluated the effect of PPMO targeted to regions of the pre-mRNA or mRNA of the HA-cleaving protease TMPRSS2 on proteolytic activation and spread of influenza viruses in human Calu-3 airway epithelial cells. We found that treatment of cells with a PPMO (T-ex5) designed to interfere with TMPRSS2 pre-mRNA splicing resulted in TMPRSS2 mRNA lacking exon 5 and consequently the expression of a truncated and enzymatically inactive form of TMPRSS2. Altered splicing of TMPRSS2 mRNA by the T-ex5 PPMO prevented HA cleavage in different human seasonal and pandemic influenza A viruses and suppressed viral titers by 2 to 3 log(10) units, strongly suggesting that TMPRSS2 is responsible for HA cleavage in Calu-3 airway cells. The data indicate that PPMO provide a useful reagent for investigating HA-activating proteases and may represent a promising strategy for the development of novel therapeutics to address influenza infections.
Collapse
|
25
|
The Varicella-Zoster virus IE4 protein: a conserved member of the herpesviral mRNA export factors family and a potential alternative target in antiherpetic therapies. Biochem Pharmacol 2010; 80:1973-80. [PMID: 20650265 DOI: 10.1016/j.bcp.2010.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/05/2010] [Accepted: 07/08/2010] [Indexed: 02/07/2023]
Abstract
During a viral infection, in addition to cellular mRNAs, amounts of viral mRNAs have to be efficiently transported to the cytoplasm for translation. It is now established that herpesviruses encode a conserved gene family whose proteins act as viral mRNA export factors that mediate nucleocytoplasmic transport of viral transcripts and eventually modulate through this mechanism the antiviral response. This conserved family of proteins contains the IE4 protein of the Varicella-Zoster virus (VZV). Here, we compared the functional characteristics of IE4 with those of its herpesviral homologues and proposed a model by which IE4 would be able to recruit the essential TAP/NXF1 receptor to viral transcripts. Moreover, on the basis of their crucial roles in the infectious cycle, these conserved viral factors should be considered as alternative targets in therapeutic approaches. Here, we discussed the possibility of developing antiherpetic agents targeting IE4 or its herpesviral homologues.
Collapse
|
26
|
Delcroix M, Riley LW. Cell-Penetrating Peptides for Antiviral Drug Development. Pharmaceuticals (Basel) 2010; 3:448-470. [PMID: 27713263 PMCID: PMC4033964 DOI: 10.3390/ph3030448] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/06/2010] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
Viral diseases affect hundreds of millions of people worldwide, and the few available drugs to treat these diseases often come with limitations. The key obstacle to the development of new antiviral agents is their delivery into infected cells in vivo. Cell-penetrating peptides (CPPs) are short peptides that can cross the cellular lipid bilayer with the remarkable capability to shuttle conjugated cargoes into cells. CPPs have been successfully utilized to enhance the cellular uptake and intracellular trafficking of antiviral molecules, and thereby increase the inhibitory activity of potential antiviral proteins and oligonucleotide analogues, both in cultured cells and in animal models. This review will address the notable findings of these studies, highlighting some promising results and discussing the challenges CPP technology has to overcome for further clinical applications.
Collapse
Affiliation(s)
- Melaine Delcroix
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| | - Lee W Riley
- School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|