1
|
Hume J, Lowry K, Whiley DM, Irwin AD, Bletchly C, Sweeney EL. Application of the ViroKey® SQ FLEX assay for detection of cytomegalovirus antiviral resistance. J Clin Virol 2023; 167:105556. [PMID: 37566984 DOI: 10.1016/j.jcv.2023.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) is a viral infection which establishes lifelong latency, often reactivating and causing disease in immunosuppressed individuals, including haematopoietic stem cell transplant (HSCT) recipients. Treatment can be problematic due to antiviral resistance which substantially increases the risk of patient mortality. Diagnostic testing capabilities for CMV antiviral resistance in Australia and elsewhere have traditionally relied on gene-specific Sanger sequencing approaches, however, are now being superseded by next generation sequencing protocols. OBJECTIVE Provide a snapshot of local mutations and explore the feasibility of the ViroKeyࣨ® SQ FLEX Genotyping Assay (Vela Diagnostics Pty Ltd) by examining sequencing success. METHOD Performed sequencing on adult (n = 38) and paediatric (n = 81) plasma samples, over a large range of viral loads (above and below the assay recommended threshold of ≥1,000 International Units (IU)/mL; noting most of our paediatric samples have loads <1,000 IU/mL). RESULTS Eleven test runs (including three repeat runs; 14 to 15 samples per run) were conducted, and four runs were deemed valid. The overall individual sample success rate for the four evaluable test runs was 71.2% (42/59 samples); 80.4% (37/46) samples ≥1,000 IU/mL were valid. Ten clinically important antiviral resistance mutations were detected, the most common being A594V in the UL97 gene, found in 6 (5%) samples. CONCLUSIONS A range of technical issues were experienced, however with improvement this platform could be a useful addition to routine pathology workflows, providing timely antiviral resistance results for patients undergoing HSCT.
Collapse
Affiliation(s)
- Jocelyn Hume
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Kym Lowry
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Queensland Paediatric Infectious Diseases (QPID) Sakzewski Laboratory, Centre for Children's Health Research, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Adam D Irwin
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia; Infection Management and Prevention Service, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Cheryl Bletchly
- Pathology Queensland Central Laboratory, Brisbane, Queensland, Australia
| | - Emma L Sweeney
- Faculty of Medicine, The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
3
|
Andronova VL. [Modern ethiotropic chemotherapy of human cytomegalovirus infection: clinical effectiveness, molecular mechanism of action, drug resistance, new trends and prospects. Part 2.]. Vopr Virusol 2019; 63:250-260. [PMID: 30641020 DOI: 10.18821/0507-4088-2018-63-6-250-260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022]
Abstract
A number of synthetic compounds, such as the nucleoside analog ganciclovir, its L-valine ester (a metabolic precursor of ganciclovir) and pyrophosphate analog foscarnet, are permitted for the treatment of HCMVrelated diseases in the WHO European Region. The viral DNA- polymerase is used by all these drugs as a biotarget. However, the usage of standard anti-CMV therapy is accompanied by severe side effects, as well as the development of drug resistance in the virus, mainly in conditions of immunodefciency. In this review, we focused on viral proteins of interest as new potential targets and their inhibitors, such as the inhibitor of human CMV terminology, lethermovir, which showed great activity in the third phase of clinical trials, inhibitors of viral cyclin-dependent kinase (maribavir, cyclopropavir) and a number of compounds exhibiting anti-HCMV-activity, undergoing only preclinical trials in the experiment. Inclusion of new anti-CMV agents that are active against GСV/PFA/CDV-resistant strains of CMV into standard prophylactic and therapeutic regimens, will allow to increase the effectiveness of anti-CMV therapy, including in cases when standard therapy is ineffective. Areas covered: the international databases such as A MEDLINE, PubMed, eLIBRARY.RU, ClinicalTrials.gov., etc. with the purpose of obtaining information on compounds showing selective action against the human cytomegalovirus, the most promising for the development of drugs.
Collapse
Affiliation(s)
- V L Andronova
- National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| |
Collapse
|
4
|
Cytomegalovirus Late Protein pUL31 Alters Pre-rRNA Expression and Nuclear Organization during Infection. J Virol 2017; 91:JVI.00593-17. [PMID: 28659485 DOI: 10.1128/jvi.00593-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/24/2017] [Indexed: 02/01/2023] Open
Abstract
The replication cycle of human cytomegalovirus (CMV) leads to drastic reorganization of domains in the host cell nucleus. However, the mechanisms involved and how these domains contribute to infection are not well understood. Our recent studies defining the CMV-induced nuclear proteome identified several viral proteins of unknown functions, including a protein encoded by the UL31 gene. We set out to define the role of UL31 in CMV replication. UL31 is predicted to encode a 74-kDa protein, referred to as pUL31, containing a bipartite nuclear localization signal, an intrinsically disordered region overlapping arginine-rich motifs, and a C-terminal dUTPase-like structure. We observed that pUL31 is expressed with true late kinetics and is localized to nucleolin-containing nuclear domains. However, pUL31 is excluded from the viral nuclear replication center. Nucleolin is a marker of nucleoli, which are membrane-less regions involved in regulating ribosome biosynthesis and cellular stress responses. Other CMV proteins associate with nucleoli, and we demonstrate that pUL31 specifically interacts with the viral protein, pUL76. Coexpression of both proteins altered pUL31 localization and nucleolar organization. During infection, pUL31 colocalizes with nucleolin but not the transcriptional activator, UBF. In the absence of pUL31, CMV fails to reorganize nucleolin and UBF and exhibits a replication defect at a low multiplicity of infection. Finally, we observed that pUL31 is necessary and sufficient to reduce pre-rRNA levels, and this was dependent on the dUTPase-like motif in pUL31. Our studies demonstrate that CMV pUL31 functions in regulating nucleolar biology and contributes to the reorganization of nucleoli during infection.IMPORTANCE Nucleolar biology is important during CMV infection with the nucleolar protein, with nucleolin playing a role in maintaining the architecture of the viral nuclear replication center. However, the extent of CMV-mediated regulation of nucleolar biology is not well established. Proteins within nucleoli regulate ribosome biosynthesis and p53-dependent cellular stress responses that are capable of inducing cell cycle arrest and/or apoptosis, and they are proposed targets for cancer therapies. This study establishes that CMV protein pUL31 is necessary and sufficient to regulate nucleolar biology involving the reorganization of nucleolar proteins. Understanding these processes will help define approaches to stimulate cellular intrinsic stress responses that are capable of inhibiting CMV infection.
Collapse
|
5
|
Mirarab A, Mohebbi A, Moradi A, Javid N, Vakili MA, Tabarraei A. Frequent pUL27 Variations in HIV-Infected Patients. Intervirology 2017; 59:262-266. [PMID: 28402975 DOI: 10.1159/000471484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Drug-resistant isolates of human cytomegalovirus (HCMV) have led to the development of new anti-HCMV drugs. Maribavir (MBV) is a novel inhibitor of the HCMV viral kinase. Resistance to MBV is mapped to gene UL27, a viral nuclear protein. In this study, we investigated UL27 polymorphisms in MBV-naive HIV-positive and HCMV congenitally infected clinical samples. METHODS DNA was extracted from 20 CMV-positive HIV (9/20) and congenitally infected (11/20) patients and used for UL27 polymerase chain reaction amplification. Sanger sequencing and multiple sequence alignment of products was performed. RESULTS K90 was the most prevalent polymorphism in both HIV-positive and congenitally infected patients. Polymorphisms Q54, D123, and R107 (10%) were seen in more than one sample. There were significantly more polymorphisms in the HIV-positive samples (p = 0.038). CONCLUSION HCMV pUL27 is highly variable in adult immunocompromised HIV-positive patients.
Collapse
Affiliation(s)
- Azam Mirarab
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | | | | | | | | | | |
Collapse
|
6
|
Houldcroft CJ, Bryant JM, Depledge DP, Margetts BK, Simmonds J, Nicolaou S, Tutill HJ, Williams R, Worth AJJ, Marks SD, Veys P, Whittaker E, Breuer J. Detection of Low Frequency Multi-Drug Resistance and Novel Putative Maribavir Resistance in Immunocompromised Pediatric Patients with Cytomegalovirus. Front Microbiol 2016; 7:1317. [PMID: 27667983 PMCID: PMC5016526 DOI: 10.3389/fmicb.2016.01317] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed pediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1–27 weeks. Changes in consensus sequence and resistance mutations were analyzed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54) and C480F (UL97). In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of 11 subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.
Collapse
Affiliation(s)
- Charlotte J Houldcroft
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Division of Infection and Immunity, University College LondonLondon, UK
| | - Josephine M Bryant
- Division of Infection and Immunity, University College London London, UK
| | - Daniel P Depledge
- Division of Infection and Immunity, University College London London, UK
| | - Ben K Margetts
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College LondonLondon, UK
| | - Jacob Simmonds
- Great Ormond Street Hospital for Children NHS Foundation Trust London, UK
| | - Stephanos Nicolaou
- Division of Infection and Immunity, University College London London, UK
| | - Helena J Tutill
- Division of Infection and Immunity, University College London London, UK
| | - Rachel Williams
- Division of Infection and Immunity, University College London London, UK
| | - Austen J J Worth
- Great Ormond Street Hospital for Children NHS Foundation Trust London, UK
| | - Stephen D Marks
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Great Ormond Street Hospital for Children NHS Foundation TrustLondon, UK
| | - Paul Veys
- Great Ormond Street Hospital for Children NHS Foundation Trust London, UK
| | | | - Judith Breuer
- Infection, Immunity, Inflammation and Physiological Medicine, Institute of Child Health, University College LondonLondon, UK; Division of Infection and Immunity, University College LondonLondon, UK; Great Ormond Street Hospital for Children NHS Foundation TrustLondon, UK
| |
Collapse
|
7
|
Antagonistic Relationship between Human Cytomegalovirus pUL27 and pUL97 Activities during Infection. J Virol 2015. [PMID: 26223645 DOI: 10.1128/jvi.00986-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a member of the betaherpesvirus family. During infection, an array of viral proteins manipulates the host cell cycle. We have previously shown that expression of HCMV pUL27 results in increased levels of the cyclin-dependent kinase (CDK) inhibitor p21(Cip1). In addition, pUL27 is necessary for the full antiviral activity of the pUL97 kinase inhibitor maribavir (MBV). The purpose of this study was to define the relationship between pUL27 and pUL97 and its role in MBV antiviral activity. We observed that expression of wild-type but not kinase-inactive pUL97 disrupted pUL27-dependent induction of p21(Cip1). Furthermore, pUL97 associated with and promoted the phosphorylation of pUL27. During infection, inhibition of the kinase resulted in elevated levels of p21(Cip1) in wild-type virus but not a pUL27-deficient virus. We manipulated the p21(Cip1) levels to evaluate the functional consequence to MBV. Overexpression of p21(Cip1) restored MBV activity against a pUL27-deficient virus, while disruption reduced activity against wild-type virus. We provide evidence that the functional target of p21(Cip1) in the context of MBV activity is CDK1. One CDK-like activity of pUL97 is to phosphorylate nuclear lamin A/C, resulting in altered nuclear morphology and increased viral egress. In the presence of MBV, we observed that infection using a pUL27-deficient virus still altered the nuclear morphology. This was prevented by the addition of a CDK inhibitor. Overall, our results demonstrate an antagonistic relationship between pUL27 and pUL97 activities centering on p21(Cip1) and support the idea that CDKs can complement some activities of pUL97. IMPORTANCE HCMV infection results in severe disease upon immunosuppression and is a leading cause of congenital birth defects. Effective antiviral compounds exist, yet they exhibit high levels of toxicity, are not approved for use during pregnancy, and can result in antiviral resistance. Our studies have uncovered new information regarding the antiviral efficacy of the HCMV pUL97 kinase inhibitor MBV as it relates to the complex interplay between pUL97 and a second HCMV protein, pUL27. We demonstrate that pUL97 functions antagonistically against pUL27 by phosphorylation-dependent inactivation of pUL27-mediated induction of p21(Cip1). In contrast, we provide evidence that p21(Cip1) functions to antagonize overlapping activities between pUL97 and cellular CDKs. In addition, these studies further support the notion that CDK inhibitors or p21(Cip1) activators might be useful in combination with MBV to effectively inhibit HCMV infections.
Collapse
|
8
|
Hu C, Chen J, Ye L, Chen R, Zhang L, Xue X. Codon usage bias in human cytomegalovirus and its biological implication. Gene 2014; 545:5-14. [PMID: 24814188 DOI: 10.1016/j.gene.2014.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Human cytomegalovirus (HCMV) infection, a worldwide contagion, causes a serious disorder in infected individuals. Analysis of codon usage can reveal much molecular information about this virus. The effective number of codon (ENC) values, relative synonymous codon usage (RSCU) values, codon adaptation index (CAI), and nucleotide contents was investigated in approximately 160 coding sequences (CDS) among 17 human cytomegalovirus genomes using the software CodonW. Linear regression analysis and logistic regression were performed to explore the preliminary data. The results showed that, overall, HCMV genomes had low codon usage bias (mean ENC=47.619). However, the ENC of individual CDS varied widely and was distributed unevenly between host-related genes and viral-self-function genes (P=0.002, odds ratio (OR)=3.194), as did the GC content (P=0.016, OR=2.178). The ENC values correlated with CAI, GC content, and the nucleotide composing at the 3rd codon position (GC3s) (P<0.001). There was a significant variation in the codon preference that depended on the RSCU data. The predicted ENC curve suggested that mutational pressure, rather than natural selection, was one of the main factors that determined the codon usage bias in HCMV. Among 123 genes with known function, the genes related to viral self-replication and viral-host interaction showed different ENC and CAI values, and GC and GC3s contents. In conclusion, the detailed codon usage bias theoretically revealed information concerning HCMV evolution and could be a valuable additional parameter for HCMV gene function research.
Collapse
Affiliation(s)
- Changyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Jing Chen
- Department of Rheumatism and Immunology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lulu Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Lifang Zhang
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Wenzhou Medical University, Ouhai District 325035, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
9
|
Alain S, Revest M, Veyer D, Essig M, Rerolles JP, Rawlinson W, Mengelle C, Huynh A, Kamar N, Garrigue I, Kaminski H, Segard C, Presne C, Mazeron MC, Avettant-Fenoël V, Lecuit M, Lortholary O, Coaquette A, Hantz S, Leruez-Ville M, Ploy MC. Maribavir use in practice for cytomegalovirus infection in French transplantation centers. Transplant Proc 2013; 45:1603-7. [PMID: 23726629 DOI: 10.1016/j.transproceed.2013.01.082] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/24/2013] [Indexed: 01/12/2023]
Abstract
Maribavir (MBV), a UL97 inhibitor, shows good oral bioavailability, low host cell toxicity, and theoretical benefits to inhibit cross-resistant viruses. We herein examined clinical and virological outcomes of 12 patients, including 3 bone marrow recipients and 9 organ recipients infected with resistant cytomegalovirus (CMV) and treated with MBV during 2011-2012. All received at least 800-mg daily doses. They had developed clinical (12/12) and/or virological (11/12) resistance to CMV infection. Based on a decrease of viral load in blood >1.5 log copies/mL half of them responded to MBV treatment. The individual changes varied from a rapid decrease in viral load (n = 4) to no response (n = 3) with some late response slowly decreasing viremia (n = 3). In 2 cases MBV was used as secondary prophylaxis. No clear parameter emerged as a clinical surrogate for nonresponse to MBV. These results contrast with the lack of efficacy in phase III trials of MBV prophylaxis among stem cell recipients, which were possibly due to low doses or inadequate timing of drug initiation in the study. Additional clinical and surrogate laboratory markers are needed to determine antiviral responses to guide MBV use. Dosage ranging studies might benefit future MBV use.
Collapse
Affiliation(s)
- S Alain
- Virology Department, CHU Limoges, University Limoges, Inserm UMR-S1092, National Reference Center for Cytomegaloviruses, Limoges, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Novel method based on "en passant" mutagenesis coupled with a gaussia luciferase reporter assay for studying the combined effects of human cytomegalovirus mutations. J Clin Microbiol 2013; 51:3216-24. [PMID: 23863570 DOI: 10.1128/jcm.01275-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human cytomegalovirus (HCMV) resistance to antivirals is a major problem in immunocompromised patients. Drug resistance is characterized by phenotypic testing or genotypic analysis of the phosphotransferase (UL97) and DNA polymerase (UL54) genes. However, genotypic assays require further characterization of unknown mutations in the drug resistance phenotype. Here, we describe a novel method for generating single or multiple mutations anywhere in the HCMV genome and for studying their effects on drug susceptibility. This method is based on cloning of the reference AD169 strain in a bacterial artificial chromosome and the use of "en passant" mutagenesis in bacteria to introduce mutations in recombinant HCMV without scar sequences. We also used this methodology to introduce the Gaussia luciferase reporter gene into the genome of the recombinant virus. To validate our system, the well-characterized single mutants with UL97 A594V and UL54 E756K mutations as well as the undescribed A594V/E756K double mutant were generated and their drug susceptibility profiles were determined by measuring the luciferase activity in cell culture supernatants. Drug susceptibility phenotypes for the A594V (8.2-fold increase in ganciclovir 50% effective concentration [EC50]) and E756K (1.9-, 3.9-, and 3.0-fold increases in ganciclovir, foscarnet, and cidofovir EC50s, respectively) mutants were similar to those previously reported, while the double mutant exhibited 10.8-, 4.1-, and 2.0-fold increases in ganciclovir, foscarnet, and cidofovir EC50s, respectively. The combination of the Gaussia luciferase reporter-based assay with the markerless "en passant" mutagenesis methodology constitutes an efficient system for studying phenotypes with single or multiple HCMV mutations.
Collapse
|
11
|
Chou S, Hakki M, Villano S. Effects on maribavir susceptibility of cytomegalovirus UL97 kinase ATP binding region mutations detected after drug exposure in vitro and in vivo. Antiviral Res 2012; 95:88-92. [PMID: 22664236 DOI: 10.1016/j.antiviral.2012.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/16/2012] [Accepted: 05/24/2012] [Indexed: 11/25/2022]
Abstract
Resistance to the experimental human cytomegalovirus (CMV) UL97 kinase inhibitor maribavir has been mapped to UL97 mutations at codons 353, 397, 409 and 411, in the kinase ATP-binding region, and to mutations in the UL27 gene. We studied the maribavir susceptibility phenotypes of additional UL97 mutations observed in vitro and in clinical trials, and the effect of simultaneous mutation in both UL97 and UL27. In vitro selection under maribavir identified a new locus of UL97 mutation within the conserved kinase p-loop (L337M), which conferred low grade maribavir resistance (3.5-fold increased EC50) without ganciclovir cross-resistance. During maribavir Phase III CMV prevention clinical trials, three previously unknown UL97 sequence variants were detected in plasma samples after 27-98 days of drug exposure (I324V, S334G and S386L). These variants did not confer any drug resistance despite proximity to mutations that confer maribavir resistance. The UL27 resistance mutation R233S, when added to strains containing UL97 mutations L337M or V353A, doubled their maribavir EC50s. These results expand the range of UL97 maribavir-resistance mutations into another part of the kinase ATP-binding region, but offer no genotypic evidence that development of drug resistance affected the outcomes of Phase III maribavir clinical trials after drug exposure of up to 14 weeks. There is a potential for increased maribavir resistance in UL27-UL97 double mutants.
Collapse
Affiliation(s)
- Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
12
|
Abstract
Resurgent interest in antiviral drugs for the treatment of herpesvirus has led to the development of new compounds that are progressing through clinical trials. This is important because there are few therapeutic options for resistant infections and some viruses such as human cytomegalovirus remain underserved. New compounds include conventional DNA polymerase inhibitors such as valomaciclovir and cyclopropavir, as well as CMX001 that has a broad spectrum of antiviral activity that includes all the herpesviruses. It also includes compounds with new molecular targets such as maribavir (MBV), FV-100, AIC361, and AIC246. Recent advances with each of these compounds will be reviewed including their virus specificity, mechanism of action, and stage of development. The potential of these new compounds to improve clinical outcome will also be discussed.
Collapse
Affiliation(s)
- Nathan B. Price
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711 USA
| | - Mark N. Prichard
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham AL 35233-1711 USA
| |
Collapse
|