1
|
de la Fuente J, Kocan KM. The Impact of RNA Interference in Tick Research. Pathogens 2022; 11:pathogens11080827. [PMID: 35894050 PMCID: PMC9394339 DOI: 10.3390/pathogens11080827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past two decades, RNA interference (RNAi) in ticks, in combination with omics technologies, have greatly advanced the discovery of tick gene and molecular function. While mechanisms of RNAi were initially elucidated in plants, fungi, and nematodes, the classic 2002 study by Aljamali et al. was the first to demonstrate RNAi gene silencing in ticks. Subsequently, applications of RNAi have led to the discovery of genes that impact tick function and tick-host-pathogen interactions. RNAi will continue to lead to the discovery of an array of tick genes and molecules suitable for the development of vaccines and/or pharmacologic approaches for tick control and the prevention of pathogen transmission.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
- Correspondence: or
| | - Katherine M. Kocan
- The Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
2
|
Three kinds of treatment with Homoharringtonine, Hydroxychloroquine or shRNA and their combination against coronavirus PEDV in vitro. Virol J 2020; 17:71. [PMID: 32493436 PMCID: PMC7267768 DOI: 10.1186/s12985-020-01342-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) of the family Coronaviridae has caused substantial economic losses in the swine husbandry industry. There’s currently no specific drug available for treatment of coronaviruses or PEDV. Method In the current study, we use coronavirus PEDV as a model to study antiviral agents. Briefly, a fusion inhibitor tHR2, recombinant lentivirus-delivered shRNAs targeted to conserved M and N sequences, homoharringtonine (HHT), and hydroxychloroquine (HCQ) were surveyed for their antiviral effects. Results Treatment with HCQ at 50 μM and HHT at 150 nM reduced virus titer in TCID50 by 30 and 3.5 fold respectively, and the combination reduced virus titer in TCID50 by 200 fold. Conclusion Our report demonstrates that the combination of HHT and HCQ exhibited higher antiviral activity than either HHT or HCQ exhibited. The information may contribute to the development of antiviral strategies effective in controlling PEDV infection.
Collapse
|
3
|
Yuan L, Feng X, Gao X, Luo Y, Liu C, Liu P, Yang G, Ren H, Huang R, Feng Y, Yang J. Effective inhibition of different Japanese encephalitis virus genotypes by RNA interference targeting two conserved viral gene sequences in vitro and in vivo. Virus Genes 2018; 54:746-755. [PMID: 30229544 DOI: 10.1007/s11262-018-1602-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022]
Abstract
Japanese encephalitis is a zoonotic, mosquito-borne, infectious disease caused by Japanese encephalitis virus (JEV), which is prevalent in China. At present, there are no specific drugs or therapies for JEV infection, which can only be treated symptomatically. Lentivirus-mediated RNA interference (RNAi) is a highly efficient method to silence target genes. In this study, two lentiviral shRNA, LV-C and LV-NS5, targeting the conserved viral gene sequences were used to inhibit different JEV genotypes strains in BHK21 cells and mice. The results showed that LV-C significantly inhibited JEV genotype I and genotype III strains in cells and mice. Quantitative RT-PCR analysis showed that JEV mRNA were reduced by 83.2-90.9% in cells by LV-C and that flow cytometry analysis confirmed the inhibitory activity of LV-C. The viral titers were reduced by about 1000-fold in cells and the brains of suckling mice by LV-C, and the pretreatment of LV-C protected 60-80% of mice against JEV-induced lethality. The inhibitory activities of LV-NS5 in cells and mice were weaker than those of LV-C. These results indicate that RNAi targeting of the two conserved viral gene sequences had significantly suppressed the replication of different JEV genotypes strains in vitro and in vivo, highlighting the feasibility of RNAi targeting of conserved viral gene sequences for controlling JEV infection.
Collapse
Affiliation(s)
- Lei Yuan
- Pathogen and Immunology Experiment Teaching Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaojuan Feng
- Medical Functional Experiment Teaching Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Xuelian Gao
- Department of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Yu Luo
- Department of Medical Imaging, North Sichuan Medical College, Nanchong, 637100, China
| | - Chaoyue Liu
- Pathogen and Immunology Experiment Teaching Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Peng Liu
- Pathogen and Immunology Experiment Teaching Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Guolin Yang
- Laboratory Animal Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Hong Ren
- Laboratory Animal Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Rong Huang
- Pathogen and Immunology Experiment Teaching Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Yalan Feng
- Pathogen and Immunology Experiment Teaching Center, North Sichuan Medical College, Nanchong, 637100, China
| | - Jian Yang
- Pathogen and Immunology Experiment Teaching Center, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
4
|
Significant inhibition of Tembusu virus envelope and NS5 gene using an adenovirus-mediated short hairpin RNA delivery system. INFECTION GENETICS AND EVOLUTION 2017; 54:387-396. [PMID: 28780191 DOI: 10.1016/j.meegid.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 12/17/2022]
Abstract
Tembusu virus (TMUV) is a mosquito-borne flavivirus, which was first isolated in the tropics during the 1970s. Recently, a disease characterized by ovarian haemorrhage and neurological symptoms was observed in ducks in China, which threatens poultry production. However, there is no suitable vaccination strategy or effective antiviral drugs to combat TMUV infections. Consequently, there is an urgent need to develop a new anti-TMUV therapy. In this study, we report an efficient short hairpin RNA (shRNA) delivery strategy for the inhibition of TMUV production using an adenovirus vector system. Using specifically designed shRNAs based on the E and NS5 protein genes of TMUV, the vector-expressed viral genes, TMUV RNA replication and infectious virus production were downregulated at different levels in Vero cells, where the shRNA (NS52) was highly effective in inhibiting TMUV. Using the human adenovirus type 5 shRNA delivery system, the recombinant adenovirus (rAd-NS52) inhibited TMUV multiplication with high efficiency. Furthermore, the significant dose-dependent inhibition of viral RNA copies induced by rAd-NS52 was found in TMUV-infected cells, which could last for at least 96h post infection. Our results indicated that the adenovirus-mediated delivery of shRNAs could play an active role in future TMUV antiviral therapeutics.
Collapse
|
5
|
Taba P, Schmutzhard E, Forsberg P, Lutsar I, Ljøstad U, Mygland Å, Levchenko I, Strle F, Steiner I. EAN consensus review on prevention, diagnosis and management of tick‐borne encephalitis. Eur J Neurol 2017; 24:1214-e61. [DOI: 10.1111/ene.13356] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/01/2017] [Indexed: 12/30/2022]
Affiliation(s)
- P. Taba
- Department of Neurology and Neurosurgery University of Tartu Tartu Estonia
| | - E. Schmutzhard
- Department of Neurology Medical University Innsbruck Innsbruck Austria
| | - P. Forsberg
- Department of Clinical and Experimental Medicine and Department of Infectious Diseases Linköping University Linköping Sweden
| | - I. Lutsar
- Department of Microbiology University of Tartu Tartu Estonia
| | - U. Ljøstad
- Department of Neurology Sørlandet Hospital Kristiansand Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - Å. Mygland
- Department of Neurology Sørlandet Hospital Kristiansand Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - I. Levchenko
- Institute of Neurology Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine Kharkiv Ukraine
| | - F. Strle
- Department of Infectious Diseases University Medical Centre Ljubljana Ljubljana Slovenia
| | - I. Steiner
- Department of Neurology Rabin Medical Center Petach Tikva Israel
| |
Collapse
|
6
|
Yuan L, Wu R, Liu H, Wen X, Huang X, Wen Y, Ma X, Yan Q, Huang Y, Zhao Q, Cao S. The NS3 and NS4A genes as the targets of RNA interference inhibit replication of Japanese encephalitis virus in vitro and in vivo. Gene 2016; 594:183-189. [PMID: 27593564 DOI: 10.1016/j.gene.2016.08.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/10/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that can cause acute encephalitis with a high fatality rate. RNA interference (RNAi) is a powerful tool to silence gene expression and a potential therapy for virus infection. In this study, the antiviral ability of eight shRNA expression plasmids targeting different sites of the NS3 and NS4A genes of JEV was determined in BHK21 cells and mice. The pGP-NS3-3 and pGP-NS4A-4 suppressed 93.9% and 82.0% of JEV mRNA in cells, respectively. The virus titer in cells was reduced approximately 950-fold by pretreating with pGP-NS3-4, and 640-fold by pretreating with pGP-NS4A-4. The results of western blot and immunofluorescence analysis showed JEV E protein and viral load in cells were remarkably inhibited by shRNA expression plasmids. The viral load in brains of mice pretreated with pGP-NS3-4 or pGP-NS4A-4 were reduced approximately 2400-fold and 800-fold, respectively, and the survival rate of mice challenged with JEV were 70% and 50%, respectively. However, the antiviral ability of shRNA expression plasmids was decreased over time. This study indicates that RNAi targeting of the NS3 and NS4A genes of JEV can sufficiently inhibit the replication of JEV in vitro and in vivo, and NS3 and NS4A genes might be potential targets of molecular therapy for JEV infection.
Collapse
Affiliation(s)
- Lei Yuan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Hanyang Liu
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xintian Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Yiping Wen
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Xiaoping Ma
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Qigui Yan
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Yong Huang
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China
| | - Qin Zhao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- Research Center of Swine Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Laboratory of Zoonosis, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-observation Experiment of Veterinary Drugs and Veterinary Biological Technology, Ministry of Agriculture, Chengdu 611130, China.
| |
Collapse
|
7
|
Shen H, Zhang C, Guo P, Liu Z, Zhang J. Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro. Virus Genes 2015; 51:252-9. [PMID: 26329934 PMCID: PMC7088742 DOI: 10.1007/s11262-015-1242-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 11/25/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a member of the coronaviridae family, which can cause acute and highly contagious enteric disease of swine characterized by severe entero-pathogenic diarrhea in piglets. Currently, the vaccines of PEDV are only partially effective and there is no specific drug available for treatment of PEDV infection. To exploit the possibility of using RNA interference (RNAi) as a strategy against PEDV infection, five shRNA-expressing plasmids targeting the N, M, and S genes of PEDV were constructed and transfected into Vero cells. The cytopathic effect and MTS assays demonstrated that two shRNAs (pSilencer4.1-M1 and pSilencer4.1-N) were capable of protecting cells against PEDV invasion with very high specificity and efficiency. The two shRNA expression plasmids were also able to inhibit the PEDV replication significantly, as shown by detection of virus titers (TCID50/mL). A real-time quantitative RT-PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with these two plasmids were reduced by 95.0 %. Our results suggest that RNAi might be a promising new strategy against PEDV infection.
Collapse
Affiliation(s)
- Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Pengju Guo
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, 510640, Guangdong, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Open Laboratory of Veterinary Public Health, Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
8
|
Ayllón N, Naranjo V, Hajdušek O, Villar M, Galindo RC, Kocan KM, Alberdi P, Šíma R, Cabezas-Cruz A, Rückert C, Bell-Sakyi L, Kazimírová M, Havlíková S, Klempa B, Kopáček P, de la Fuente J. Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. PLoS One 2015; 10:e0133038. [PMID: 26186700 PMCID: PMC4506139 DOI: 10.1371/journal.pone.0133038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/23/2015] [Indexed: 11/18/2022] Open
Abstract
Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found.
Collapse
Affiliation(s)
- Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Victoria Naranjo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Ondrej Hajdušek
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005, České Budějovice, The Czech Republic
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Ruth C. Galindo
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005, České Budějovice, The Czech Republic
| | - Alejandro Cabezas-Cruz
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 –CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Claudia Rückert
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Lesley Bell-Sakyi
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, United Kingdom
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 84506, Bratislava, Slovakia
| | - Sabína Havlíková
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Boris Klempa
- Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 84505, Bratislava, Slovakia
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 31, 37005, České Budějovice, The Czech Republic
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
9
|
Presloid JB, Novella IS. RNA Viruses and RNAi: Quasispecies Implications for Viral Escape. Viruses 2015; 7:3226-40. [PMID: 26102581 PMCID: PMC4488735 DOI: 10.3390/v7062768] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/04/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022] Open
Abstract
Due to high mutation rates, populations of RNA viruses exist as a collection of closely related mutants known as a quasispecies. A consequence of error-prone replication is the potential for rapid adaptation of RNA viruses when a selective pressure is applied, including host immune systems and antiviral drugs. RNA interference (RNAi) acts to inhibit protein synthesis by targeting specific mRNAs for degradation and this process has been developed to target RNA viruses, exhibiting their potential as a therapeutic against infections. However, viruses containing mutations conferring resistance to RNAi were isolated in nearly all cases, underlining the problems of rapid viral evolution. Thus, while promising, the use of RNAi in treating or preventing viral diseases remains fraught with the typical complications that result from high specificity of the target, as seen in other antiviral regimens.
Collapse
Affiliation(s)
- John B Presloid
- Department of Medical Microbiology and Immunology, College of Medicine, The University of Toledo, 3055 Arlington Avenue, Toledo, OH 43614, USA.
| | - Isabel S Novella
- Department of Medical Microbiology and Immunology, College of Medicine, The University of Toledo, 3055 Arlington Avenue, Toledo, OH 43614, USA.
| |
Collapse
|
10
|
Lani R, Moghaddam E, Haghani A, Chang LY, AbuBakar S, Zandi K. Tick-borne viruses: a review from the perspective of therapeutic approaches. Ticks Tick Borne Dis 2014; 5:457-65. [PMID: 24907187 DOI: 10.1016/j.ttbdis.2014.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 12/30/2022]
Abstract
Several important human diseases worldwide are caused by tick-borne viruses. These diseases have become important public health concerns in recent years. The tick-borne viruses that cause diseases in humans mainly belong to 3 families: Bunyaviridae, Flaviviridae, and Reoviridae. In this review, we focus on therapeutic approaches for several of the more important tick-borne viruses from these 3 families. These viruses are Crimean-Congo hemorrhagic fever virus (CCHF) and the newly discovered tick-borne phleboviruses, known as thrombocytopenia syndromevirus (SFTSV), Heartland virus and Bhanja virus from the family Bunyaviridae, tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Louping-ill virus (LIV), Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV), and Alkhurma hemorrhagic fever virus (AHFV) from the Flaviviridae family. To date, there is no effective antiviral drug available against most of these tick-borne viruses. Although there is common usage of antiviral drugs such as ribavirin for CCHF treatment in some countries, there are concerns that ribavirin may not be as effective as once thought against CCHF. Herein, we discuss also the availability of vaccines for the control of these viral infections. The lack of treatment and prevention approaches for these viruses is highlighted, and we hope that this review may increase public health awareness with regard to the threat posed by this group of viruses.
Collapse
Affiliation(s)
- Rafidah Lani
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ehsan Moghaddam
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Amin Haghani
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, Malaysia
| | - Li-Yen Chang
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sazaly AbuBakar
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Tropical Infectious Disease Research and Education Centre (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Tick-borne encephalitis virus triggers inositol-requiring enzyme 1 (IRE1) and transcription factor 6 (ATF6) pathways of unfolded protein response. Virus Res 2013; 178:471-7. [DOI: 10.1016/j.virusres.2013.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/15/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022]
|
12
|
Pripuzova NS, Gmyl LV, Romanova LI, Tereshkina NV, Rogova YV, Terekhina LL, Kozlovskaya LI, Vorovitch MF, Grishina KG, Timofeev AV, Karganova GG. Exploring of primate models of tick-borne flaviviruses infection for evaluation of vaccines and drugs efficacy. PLoS One 2013; 8:e61094. [PMID: 23585873 PMCID: PMC3621963 DOI: 10.1371/journal.pone.0061094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/05/2013] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8-16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops.
Collapse
Affiliation(s)
- Natalia S. Pripuzova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Larissa V. Gmyl
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Lidiya Iu. Romanova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Natalia V. Tereshkina
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Yulia V. Rogova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Liubov L. Terekhina
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Liubov I. Kozlovskaya
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Mikhail F. Vorovitch
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Karina G. Grishina
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Andrey V. Timofeev
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
| | - Galina G. Karganova
- FSBI Chumakov Institute of Poliomyelitis and Viral Encephalitides (IPVE) RAMS, Moscow, Russia
- * E-mail:
| |
Collapse
|
13
|
Ouyang W, Ma JR, Wang YQ, Qin LT, Jiang JY, Fan HJ, Wang XM, Wang YS. Reduction of infectious bursal disease virus replication by shRNAs targeting the VP1 and VP2 genes driven by chicken U6 promoter. Vet Microbiol 2013; 162:44-52. [DOI: 10.1016/j.vetmic.2012.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 07/30/2012] [Accepted: 08/13/2012] [Indexed: 12/13/2022]
|
14
|
Abstract
INTRODUCTION The members of the family Flaviviridae, including West Nile virus, yellow fever virus and dengue virus, are important human pathogens that are expanding their impact around the globe. The four serotypes of dengue infect 50-100 million people each year, yet the only clinical treatment is supportive care to reduce symptoms. Drugs that employ novel inhibition mechanisms and targets are urgently needed to combat the growing incidence of dengue worldwide. AREAS COVERED The authors discuss recently discovered flavivirus inhibitors with a focus on antivirals targeting non-enzymatic proteins of the dengue virus lifecycle. Specifically, the authors discuss the flaviviruses, the need for novel inhibitors and the criteria for successful antiviral drug development. Current literature describing new advances in antiviral therapy at each stage of the flavivirus lifecycle (entry, endosomal escape, viral RNA processing and replication, assembly and immune evasion) are evaluated and summarized. EXPERT OPINION Overall, the prognosis of flavivirus antiviral drug development is positive: new effective compounds have been discovered and studied. However, repurposing existing compounds and a greater translation to the clinical setting are recommended in order to combat the growing threat of flaviviruses.
Collapse
Affiliation(s)
- Carolyn Botting
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive
| | - Richard J. Kuhn
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, 240 S. Martin Jischke Drive
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Lu C, Yang R, Shen B, Osman H, Zhang Y, Yan S, Zhang L, Zhao Z. RNA interference-mediated knockdown of DGAT1 decreases triglyceride content of bovine mammary epithelial cell line. Gene Expr 2012; 15:199-206. [PMID: 23539897 PMCID: PMC6043834 DOI: 10.3727/105221613x13571653093123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diacylglyceroltransferase-1 (DGAT1) expresses in nearly all tissues, including the mammary gland. Mice lacking DGAT1 exhibit decreased triglyceride content in mammary tissue, and are resistant to diet-induced obesity and diabetes mellitus. Thus, DGAT1 has received considerable attention. In the present study, the function of DGAT1 was examined by liposome mediated RNA interference (RNAi) to knockdown the expression of endogenous DGAT1 expression in bovine mammary epithelial cells (BMEC) and the changes of the biological functions of cells were analyzed. The mRNA and protein levels, intracellular triglyceride (TG) content, and total protein of BMECs were analyzed by real-time PCR, Western blot, TG kit, and ultraviolet spectrophotometer, respectively, before and after RNAi treatment. The results indicated that knockdown of DGAT1 expression significantly reduced TG content in BMECs. This study further confirmed the importance of DGAT1 in triglyceride synthesis in bovine mammary tissue.
Collapse
Affiliation(s)
- Chunyan Lu
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| | - Runjun Yang
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| | - Binglei Shen
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| | - Hassan Osman
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| | - Yonghong Zhang
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| | - Shouqing Yan
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| | - Liying Zhang
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| | - Zhihui Zhao
- College of Animal Science, and Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|