1
|
Hanaki N, Sakaniwa R, Moromizato T, Miyata J, Ishimura K, Noguchi M, Iso H. Efficacy of Pharmacotherapy for Seasonal Influenza in Young and Middle-aged Adults: A Systematic Review and Network Meta-analysis. Intern Med 2024; 63:2913-2922. [PMID: 38494721 DOI: 10.2169/internalmedicine.2100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Objective Seasonal influenza affects healthcare demand. However, the efficacy of anti-influenza drugs, particularly among young patients at a low risk of complications, has rarely been evaluated. Therefore, we evaluated the efficacy of anti-influenza drugs against seasonal influenza in healthy young and middle-aged adults. Methods A systematic review and network meta-analysis were conducted. The Cochrane Central Register of Controlled Trials and Medical Literature Analysis and Retrieval System Online were searched for original articles reporting double-blind, randomized controlled trials published up to the end of July 2023. Clinical trials that tested the efficacy of anti-influenza drugs in young and middle-aged patients with seasonal influenza were also included. The primary outcome was time to fever alleviation. The efficacy and adverse effects of these treatments were estimated using a Bayesian hierarchical random-effects model and a Markov chain Monte Carlo simulation. Results In total, 24 articles with 34 treatments and 8,949 individuals were included. Oseltamivir (300 mg/day for 5 days) showed the largest reduction in time to fever alleviation by -19.1 [95% confidence interval (CI): -29.4, -10.7] h compared with a placebo. Baloxavir marboxil (40 mg/day) reduced the time to symptom alleviation by -28.2 (95% CI: -42.7, -13.7) h, and peramivir (300 mg/day) administered by intravenous infusion for 1 day reduced the time to resumption of usual activities by -43.5 (95% CI: -72.8, -14.2) h. Conclusion Several pharmaceutical treatments were able to reduce the recovery time for fever and symptom alleviation and resumption of usual activities in young and middle-aged adults with seasonal influenza without increasing the risk of complications.
Collapse
Affiliation(s)
- Nao Hanaki
- Department of Public Health, Osaka University Graduate School of Medicine, Japan
| | - Ryoto Sakaniwa
- Department of Public Health, Osaka University Graduate School of Medicine, Japan
| | - Takuhiro Moromizato
- Renal and Rheumatology Division, Internal Medicine Department, Okinawa Prefectural Nanbu Medical Center and Children's Medical Center, Japan
| | - Jun Miyata
- Department of Island and Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Keiko Ishimura
- Department of Public Health, Osaka University Graduate School of Medicine, Japan
| | - Midori Noguchi
- Department of Public Health, Osaka University Graduate School of Medicine, Japan
| | - Hiroyasu Iso
- Department of Public Health, Osaka University Graduate School of Medicine, Japan
- Institute for Global Health Policy Research, National Center for Global Health and Medicine, Japan
| |
Collapse
|
2
|
Jones JC, Yen HL, Adams P, Armstrong K, Govorkova EA. Influenza antivirals and their role in pandemic preparedness. Antiviral Res 2023; 210:105499. [PMID: 36567025 PMCID: PMC9852030 DOI: 10.1016/j.antiviral.2022.105499] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Effective antivirals provide crucial benefits during the early phase of an influenza pandemic, when vaccines are still being developed and manufactured. Currently, two classes of viral protein-targeting drugs, neuraminidase inhibitors and polymerase inhibitors, are approved for influenza treatment and post-exposure prophylaxis. Resistance to both classes has been documented, highlighting the need to develop novel antiviral options that may include both viral and host-targeted inhibitors. Such efforts will form the basis of management of seasonal influenza infections and of strategic planning for future influenza pandemics. This review focuses on the two classes of approved antivirals, their drawbacks, and ongoing work to characterize novel agents or combination therapy approaches to address these shortcomings. The importance of these topics in the ongoing process of influenza pandemic planning is also discussed.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hui-Ling Yen
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Peter Adams
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Kimberly Armstrong
- Biomedical Advanced Research and Development Authority, Administration for Strategic Preparedness and Response, U.S. Department of Health and Human Services, Washington, DC, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Świerczyńska M, Mirowska-Guzel DM, Pindelska E. Antiviral Drugs in Influenza. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053018. [PMID: 35270708 PMCID: PMC8910682 DOI: 10.3390/ijerph19053018] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Flu is a serious health, medical, and economic problem, but no therapy is yet available that has satisfactory results and reduces the occurrence of these problems. Nearly 20 years after the registration of the previous therapy, baloxavir marboxil, a drug with a new mechanism of action, recently appeared on the market. This is a promising step in the fight against the influenza virus. This article presents the possibilities of using all available antiviral drugs specific for influenza A and B. We compare all currently recommended anti-influenza medications, considering their mechanisms of action, administration, indications, target groups, effectiveness, and safety profiles. We demonstrate that baloxavir marboxil presents a similar safety and efficacy profile to those of drugs already used in the treatment of influenza. Further research on combination therapy is highly recommended and may have promising results.
Collapse
Affiliation(s)
- Magdalena Świerczyńska
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Dagmara M. Mirowska-Guzel
- Centre for Preclinical Research and Technology CePT, Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-116-6160; Fax: +48-22-116-6202
| | - Edyta Pindelska
- Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-093 Warsaw, Poland;
| |
Collapse
|
4
|
Palomba E, Castelli V, Renisi G, Bandera A, Lombardi A, Gori A. Antiviral Treatments for Influenza. Semin Respir Crit Care Med 2021; 42:859-872. [PMID: 34918326 DOI: 10.1055/s-0041-1733830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Influenza is an acute respiratory illness caused by the influenza A, B, and C viruses. It can occur in local outbreaks or seasonal epidemics, with possibility to spread worldwide in a pandemic when a novel strain with significant antigenic differences emerges. During the past years, several new drugs have become available, with different accessibility related to specific countries' approval. We have conducted a review of literature, analyzing the most recent data on efficacy and safety of drugs currently available to treat influenza, with a particular attention toward special populations. Efficacy and safety profile of neuraminidase inhibitors (oseltamivir, zanamivir, laninamivir, peramivir) and recently approved cap-dependent endonuclease inhibitor baloxavir marboxil are reported in literature, but still little information is available about special populations such as critically ill patients and patients with a history of chronic respiratory disease. Moreover, the emergence of strains with reduced or no susceptibility to current drugs is a matter of concern, suggesting the need of constant monitoring of viral variants.
Collapse
Affiliation(s)
- Emanuele Palomba
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy.,Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| | - Valeria Castelli
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy.,Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| | - Giulia Renisi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy.,Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy.,Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milano, Italy
| |
Collapse
|
5
|
Su HC, Feng IJ, Tang HJ, Shih MF, Hua YM. Comparative effectiveness of neuraminidase inhibitors in patients with influenza: A systematic review and network meta-analysis. J Infect Chemother 2021; 28:158-169. [PMID: 34840038 DOI: 10.1016/j.jiac.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022]
Abstract
The aim of this study was to use a network meta-analysis (NWA) to evaluate the relative efficacy and safety of various neuraminidase inhibitors (NAIs) in reducing the duration of influenza symptoms, and thereby, informing the selection of suitable therapeutic regimens for patients with influenza. We conducted a systematic review of randomized controlled trials comparing the clinical effects of four NAIs administered to patients with influenza and placebo. Relevant studies were found in the PubMed and Cochrane databases. Unpublished studies were collected from the ClinicalTrials.gov registry and through hand searching. We carried out NWA to compare the different regimens with each other and across subgroups of age and medical status (high-risk patients). A total of 58 two-arm studies were identified. Five regimens were efficacious in reducing the time to alleviation of influenza symptoms in all populations; this efficacy was comparable. No significant improvements were seen in combination therapy groups. The mean difference in the time to alleviation of symptoms ranged from 12.78 to 19.51 h. According to the summarized mean difference and surface under the cumulative ranking curve (SUCRA), peramivir (SUCRA = 82.6%), zanamivir (SUCRA = 64%), and oseltamivir (SUCRA = 55.1%) were the three top-ranking drugs for treating influenza. Zanamivir and peramivir were the preferred pharmacologic intervention among all investigated interventions based on the calculated "value preference of SUCRA." This study is a network meta-analysis to explore the therapeutic effects of NAIs in patients with influenza. Peramivir might be the best choice for reducing the time to alleviation of symptoms.
Collapse
Affiliation(s)
- Hui-Chen Su
- Department of Pharmacy, Chi Mei Medical Center, Tainan City, Taiwan
| | - I-Jung Feng
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Mei-Fen Shih
- Department of Pharmacy, Chia-Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Yi-Ming Hua
- Department of Pharmacy, Chi Mei Medical Center, Tainan City, Taiwan.
| |
Collapse
|
6
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
7
|
Mifsud EJ, Tilmanis D, Oh DY, Ming-Kay Tai C, Rossignol JF, Hurt AC. Prophylaxis of ferrets with nitazoxanide and oseltamivir combinations is more effective at reducing the impact of influenza a virus infection compared to oseltamivir monotherapy. Antiviral Res 2020; 176:104751. [PMID: 32088248 DOI: 10.1016/j.antiviral.2020.104751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022]
Abstract
Combination therapy is an alternative approach to reduce viral shedding and improve clinical outcomes following influenza virus infections. In this study we used oseltamivir (OST), a neuraminidase inhibitor and nitazoxanide (NTZ), a host directed drug, and found in vitro that the combination of these two antivirals have a synergistic relationship. Using the ferret model of (A/Perth/265/2009, (H1N1)pdm09), virus infections, we found that the combination of NTZ and OST was more effective than either NTZ or OST independently in preventing infection and reducing duration of viral shedding. However, these benefits were only seen if treatment was administered prophylactically, as opposed to therapeutically. We also found that if prophylactically treated ferrets that had detectable virus in the upper respiratory tract, no virus was detected in the lower respiratory tract. This benefit was not observed with NTZ or OST alone. The combination of NTZ and OST enhances the antiviral effect of OST, which is the standard of care in most settings.
Collapse
Affiliation(s)
- Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia.
| | - Danielle Tilmanis
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| | - Celeste Ming-Kay Tai
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, VIDRL, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; School of Health and Life Sciences, Federation University, Churchill, Victoria, Australia
| |
Collapse
|
8
|
Zou Q, Zheng S, Wang X, Liu S, Bao J, Yu F, Wu W, Wang X, Shen B, Zhou T, Zhao Z, Wang Y, Chen R, Wang W, Ma J, Li Y, Wu X, Shen W, Xie F, Vijaykrishna D, Chen Y. Influenza A-associated severe pneumonia in hospitalized patients: Risk factors and NAI treatments. Int J Infect Dis 2020; 92:208-213. [PMID: 31978583 DOI: 10.1016/j.ijid.2020.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The risk factors and the impact of NAI treatments in patients with severe influenza A-associated pneumonia remain unclear. METHODS A multicenter, retrospective, observational study was conducted in Zhejiang, China during a severe influenza epidemic in August 2017-May 2018. Clinical records of patients (>14 y) hospitalized with laboratory-confirmed influenza A virus infection and who developed severe pneumonia were compared to those with mild-to-moderate pneumonia. Risk factors related to pneumonia severity and effects of NAI treatments (monotherapy and combination of peramivir and oseltamivir) were analyzed. RESULTS 202 patients with influenza A-associated severe pneumonia were enrolled, of whom 84 (41.6%) had died. Male gender (OR = 1.782; 95% CI: 1.089-2.917; P = 0.022), chronic pulmonary disease (OR = 2.581; 95% CI: 1.447-4.603; P = 0.001) and diabetes mellitus (OR = 2.042; 95% CI: 1.135-3.673; P = 0.017) were risk factors related to influenza A pneumonia severity. In cox proportional hazards model, severe pneumonia patients treated with double dose oseltamivir (300mg/d) had a better survival rate compared to those receiving a single dose (150 mg/d) (HR = 0.475; 95%CI: 0.254-0.887; P = 0.019). However, different doses of peramivir (300 mg/d vs. 600 mg/d) and combination therapy (oseltamivir-peramivir vs. monotherapy) showed no differences in 60-day mortality (P = 0.392 and P = 0.658, respectively). CONCLUSIONS Patients with male gender, chronic pulmonary disease, or diabetes mellitus were at high risk of developing severe pneumonia after influenza A infection. Double dose oseltamivir might be considered in treating influenza A-associated severe pneumonia.
Collapse
Affiliation(s)
- Qianda Zou
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Shufa Zheng
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Xiaochen Wang
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Sijia Liu
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, PR China
| | - Jiaqi Bao
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Fei Yu
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Xianjun Wang
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Taizhou Enze Medical Center (Group), Linhai, PR China
| | - Tieli Zhou
- Department of Clinical Laboratory, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, PR China
| | - Zhigang Zhao
- Department of Clinical Laboratory, Lishui Municipal Central Hospital, Lishui, PR China
| | - Yiping Wang
- Department of Clinical Laboratory, Yinzhou People's Hospital, Ningbo, PR China
| | - Ruchang Chen
- Medical Examination and Diagnosis Center, Yiwu Center Hospital, Yiwu, PR China
| | - Wei Wang
- Department of Clinical Laboratory, Lishui People's Hospital, the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, PR China
| | - Jianbo Ma
- Department of Laboratory Medicine, the Affiliated Ningbo No.2 Hospital, College of Medicine, Ningbo University, Ningbo, PR China
| | - Yongcheng Li
- Department of Respiratory Diseases, the First People's Hospital of Xiaoshan, Hangzhou, PR China
| | - Xiaoyan Wu
- Department of Laboratory, Second Hospital of Jiaxing, Jiaxing, PR China
| | - Weifeng Shen
- Department of Laboratory, First Hospital of Jiaxing, Jiaxing, PR China
| | - Fuyi Xie
- Clinical Laboratory, Li Huili Hospital, Ningbo Medical Center, Ningbo, PR China
| | - Dhanasekaran Vijaykrishna
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Victoria, Australia; World Health Organization Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yu Chen
- Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
9
|
Bassetti M, Castaldo N, Carnelutti A. Neuraminidase inhibitors as a strategy for influenza treatment: pros, cons and future perspectives. Expert Opin Pharmacother 2019; 20:1711-1718. [PMID: 31169040 DOI: 10.1080/14656566.2019.1626824] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Influenza represents a major public health threat worldwide. Implementation of good personal health and hygiene habits, together with vaccination, is the most effective tools to reduce influenza burden both in community and in healthcare setting. However, achieving adequate vaccination rates is challenging, and vaccination does not always guarantee complete protection. Neuraminidase inhibitors represent an important measure to reduce the risk of influenza-related complications among high-risk patients developing influenza infection. Areas covered: Neuraminidase inhibitors have been proven to be safe and effective in reducing influenza severity, duration of symptoms, hospitalizations, and influenza-related-mortality. Here the authors review the available data on neuraminidase inhibitors, including the mechanism of action, pharmacokinetics, efficacy, safety and current indications for their use in clinical practice. Expert opinion: Although vaccination is the most effective tool to reduce influenza-associated morbidity and mortality, neuraminidase inhibitors represent an important option for the treatment of patients with influenza infection, particularly in high-risk categories. Moreover, antivirals play an important role in influenza prevention and prophylaxis in selected settings.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| | - Nadia Castaldo
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| | - Alessia Carnelutti
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| |
Collapse
|
10
|
Pizzorno A, Padey B, Terrier O, Rosa-Calatrava M. Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy. Front Immunol 2019; 10:531. [PMID: 30941148 PMCID: PMC6434107 DOI: 10.3389/fimmu.2019.00531] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Influenza viruses still constitute a real public health problem today. To cope with the emergence of new circulating strains, but also the emergence of resistant strains to classic antivirals, it is necessary to develop new antiviral approaches. This review summarizes the state-of-the-art of current antiviral options against influenza infection, with a particular focus on the recent advances of anti-influenza drug repurposing strategies and their potential therapeutic, regulatory and economic benefits. The review will illustrate the multiple ways to reposition molecules for the treatment of influenza, from adventitious discovery to in silico-based screening. These novel antiviral molecules, many of which targeting the host cell, in combination with conventional antiviral agents targeting the virus, will ideally enter the clinics and reinforce the therapeutic arsenal to combat influenza virus infections.
Collapse
|
11
|
Pizzorno A, Terrier O, Nicolas de Lamballerie C, Julien T, Padey B, Traversier A, Roche M, Hamelin ME, Rhéaume C, Croze S, Escuret V, Poissy J, Lina B, Legras-Lachuer C, Textoris J, Boivin G, Rosa-Calatrava M. Repurposing of Drugs as Novel Influenza Inhibitors From Clinical Gene Expression Infection Signatures. Front Immunol 2019; 10:60. [PMID: 30761132 PMCID: PMC6361841 DOI: 10.3389/fimmu.2019.00060] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/10/2019] [Indexed: 11/13/2022] Open
Abstract
Influenza virus infections remain a major and recurrent public health burden. The intrinsic ever-evolving nature of this virus, the suboptimal efficacy of current influenza inactivated vaccines, as well as the emergence of resistance against a limited antiviral arsenal, highlight the critical need for novel therapeutic approaches. In this context, the aim of this study was to develop and validate an innovative strategy for drug repurposing as host-targeted inhibitors of influenza viruses and the rapid evaluation of the most promising candidates in Phase II clinical trials. We exploited in vivo global transcriptomic signatures of infection directly obtained from a patient cohort to determine a shortlist of already marketed drugs with newly identified, host-targeted inhibitory properties against influenza virus. The antiviral potential of selected repurposing candidates was further evaluated in vitro, in vivo, and ex vivo. Our strategy allowed the selection of a shortlist of 35 high potential candidates out of a rationalized computational screening of 1,309 FDA-approved bioactive molecules, 31 of which were validated for their significant in vitro antiviral activity. Our in vivo and ex vivo results highlight diltiazem, a calcium channel blocker currently used in the treatment of hypertension, as a promising option for the treatment of influenza infections. Additionally, transcriptomic signature analysis further revealed the so far undescribed capacity of diltiazem to modulate the expression of specific genes related to the host antiviral response and cholesterol metabolism. Finally, combination treatment with diltiazem and virus-targeted oseltamivir neuraminidase inhibitor further increased antiviral efficacy, prompting rapid authorization for the initiation of a Phase II clinical trial. This original, host-targeted, drug repurposing strategy constitutes an effective and highly reactive process for the rapid identification of novel anti-infectious drugs, with potential major implications for the management of antimicrobial resistance and the rapid response to future epidemic or pandemic (re)emerging diseases for which we are still disarmed.
Collapse
Affiliation(s)
- Andrés Pizzorno
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Olivier Terrier
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Claire Nicolas de Lamballerie
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Viroscan3D SAS, Lyon, France
| | - Thomas Julien
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Blandine Padey
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Aurélien Traversier
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | - Marie-Eve Hamelin
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Chantal Rhéaume
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Séverine Croze
- ProfileXpert, SFR-Est, CNRS UMR-S3453, INSERM US7, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Vanessa Escuret
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Virologie, Centre National de Référence des virus Influenza Sud, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Julien Poissy
- Pôle de Réanimation, Hôpital Roger Salengro, Centre Hospitalier Régional et Universitaire de Lille, Université de Lille 2, Lille, France
| | - Bruno Lina
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Laboratoire de Virologie, Centre National de Référence des virus Influenza Sud, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Catherine Legras-Lachuer
- Viroscan3D SAS, Lyon, France
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne, France
| | - Julien Textoris
- Service d'Anesthésie et de Réanimation, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- Pathophysiology of Injury-Induced Immunosuppression (PI3), EA 7426 Hospices Civils de Lyon, bioMérieux, Université Claude Bernard Lyon 1, Hôpital Edouard Herriot, Lyon, France
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHU de Quebec and Laval University, Quebec City, QC, Canada
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine—VirPath Team, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
12
|
Pichon M, Picard C, Simon B, Gaymard A, Renard C, Massenavette B, Malcus C, Monneret G, Morfin-Sherpa F, Valette M, Javouhey E, Millat G, Lina B, Josset L, Escuret V. Clinical management and viral genomic diversity analysis of a child's influenza A(H1N1)pdm09 infection in the context of a severe combined immunodeficiency. Antiviral Res 2018; 160:1-9. [DOI: 10.1016/j.antiviral.2018.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
|
13
|
Li Z, Li L, Zhao S, Li J, Zhou H, Zhang Y, Yang Z, Yuan B. Re-understanding anti-influenza strategy: attach equal importance to antiviral and anti-inflammatory therapies. J Thorac Dis 2018; 10:S2248-S2259. [PMID: 30116604 DOI: 10.21037/jtd.2018.03.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The direct replication of influenza virus is not the only cause of harm to human health; influenza infection leading to a hyper-inflammatory immune response can also result in serious conditions. So, the treatment strategy for influenza needs to keep balance between antivirus and anti-inflammation. Herein, we review the treatment strategies of anti-influenza drugs and traditional Chinese medicines.
Collapse
Affiliation(s)
- Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China
| | - Li Li
- Department of Respiration, The First Hospital of Yulin, Yulin 719000, China
| | - Shuai Zhao
- Department of Emergency, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China
| | - Hongxia Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China
| | - Yunhui Zhang
- Department of Respiration, First People's Hospital of Yunnan Province, Yunnan 650032, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China.,Department of Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 519020, China
| | - Bing Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, (Guangzhou Medical University), Guangzhou 510120, China.,Department of Respiration, First People's Hospital of Yunnan Province, Yunnan 650032, China
| |
Collapse
|
14
|
Boikos C, Caya C, Doll MK, Kraicer-Melamed H, Dolph M, Delisle G, Winters N, Gore G, Quach C. Safety and effectiveness of neuraminidase inhibitors in situations of pandemic and/or novel/variant influenza: a systematic review of the literature, 2009-15. J Antimicrob Chemother 2017; 72:1556-1573. [PMID: 28204554 DOI: 10.1093/jac/dkx013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023] Open
Abstract
Objectives To review systematically the published literature evaluating neuraminidase inhibitor (NI) safety and effectiveness in situations of pandemic and novel/variant influenza. Methods We searched six online databases using comprehensive search criteria for observational studies and randomized controlled trials investigating the effects of NI treatment, prophylaxis or outbreak control in patients of all ages. Results Overall, 165 studies were included (95% observational), which were generally of low methodological quality due to lack of adjustment for confounding variables. In studies reporting adjusted estimates in general populations, NI treatment appeared likely to be effective against mortality (primarily if administered within 48 h of symptom onset) and potentially effective in reducing pneumonia. NIs appeared effective in reducing secondary transmission when indicated for prophylaxis. Limited, low-quality data suggest NIs are likely safe in general populations and may be safe in pregnant women and children. Data are scarce regarding safety of NIs in adults and high-risk individuals. Conclusions Most included studies were observational, statistically underpowered and at high risk of reporting biased and/or confounded effect estimates. NI treatment appeared likely effective in reducing mortality (cause unspecified) and pneumonia in general populations, with increasing benefit when administered with 48 h of symptom onset. NI pre- or post-exposure prophylaxis is likely effective in reducing secondary transmission of influenza in a general population. Our evidence suggests NIs are likely safe to use in the general population; however, data for children and pregnant women are limited. Knowledge gaps persist in specific populations such as Aboriginals, high-risk individuals and the elderly.
Collapse
Affiliation(s)
- C Boikos
- Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - C Caya
- Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - M K Doll
- Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - H Kraicer-Melamed
- Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - M Dolph
- Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | | | - N Winters
- Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada
| | - G Gore
- Life Sciences Library, McGill University, Montreal, QC, Canada
| | - C Quach
- Department of Epidemiology and Biostatistics, McGill University, Montreal, QC, Canada.,Department of Pediatrics, Division of Infectious Diseases, The Montreal Children's Hospital, Montreal, QC, Canada.,Department of Microbiology, Infectious Disease, and Immunology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
15
|
Oseltamivir-zanamivir combination therapy suppresses drug-resistant H1N1 influenza A viruses in the hollow fiber infection model (HFIM) system. Eur J Pharm Sci 2017; 111:443-449. [PMID: 29079337 DOI: 10.1016/j.ejps.2017.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
Drug-resistant influenza is a significant threat to global public health. Until new antiviral agents with novel mechanisms of action become available, there is a pressing need for alternative treatment strategies with available influenza antivirals. Our aims were to evaluate the antiviral activity of two neuraminidase inhibitors (oseltamivir and zanamivir) as combination therapy against H1N1 influenza A viruses, as these agents bind to the neuraminidase active site differently: oseltamivir requires a conformational change for binding whereas zanamivir does not. We performed pharmacodynamic studies in the hollow fiber infection model (HFIM) system with oseltamivir (75mg Q12h, t1/2: 8h) and zanamivir (600mg Q12h, t1/2: 2.5h), given as mono- or combination therapy, against viruses with varying susceptibilities to oseltamivir and zanamivir. Each antiviral suppressed the replication of influenza strains which were resistant to the other neuraminidase inhibitor, showing each drug does not engender cross-resistance to the other compound. Oseltamivir/zanamivir combination therapy was as effective at suppressing oseltamivir- and zanamivir-resistant influenza viruses and the combination regimen inhibited viral replication at a level that was similar to the most effective monotherapy arm. However, combination therapy offered a clear benefit by preventing the emergence and spread of drug-resistant viruses. These findings demonstrate that combination therapy with two agents that target the same viral protein through distinctly different binding interactions is a feasible strategy to combat resistance emergence. This is a novel finding that may be applicable to other viral and non-viral diseases for which different classes of agents do not exist.
Collapse
|
16
|
Characterization of oseltamivir-resistant influenza virus populations in immunosuppressed patients using digital-droplet PCR: Comparison with qPCR and next generation sequencing analysis. Antiviral Res 2017; 145:160-167. [DOI: 10.1016/j.antiviral.2017.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 01/27/2023]
|
17
|
Smee DF, Dagley A, Tarbet EB. Combinations of L-N G-monomethyl-arginine and oseltamivir against pandemic influenza A virus infections in mice. Antivir Chem Chemother 2017; 25:11-17. [PMID: 28417640 DOI: 10.1177/2040206617691885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
L-NG-monomethyl-arginine (L-NMMA) is an experimental compound that suppresses nitric oxide production in animals. The compound was combined with oseltamivir to treat lethal influenza A/California/04/2009 (H1N1) pandemic virus infections in mice. Treatments were given twice a day for five days starting 4 h (oseltamivir, by oral gavage) or three days (L-NMMA, by intraperitoneal route; corresponding to the time previously reported for nitric oxide induction in the animals) after infection. Low doses of oseltamivir were used in order to demonstrate synergy or antagonism. Oseltamivir monotherapy protected 70% of mice from death at 1 mg/kg/day. L-NMMA (40 and 80 mg/kg/day) was ineffective alone in preventing mortality. Compared to oseltamivir treatment alone, L-NMMA combined with oseltamivir was synergistically effective (as evaluated by three-dimensional MacSynergy analysis), resulting in survival increases from 20 to 70% when 40 or 80 mg/kg/day of L-NMMA was combined with 0.3 mg/kg/day of oseltamivir, and from 70 to 100% survival increases when these doses were combined with 1 mg/kg/day of oseltamivir. These data demonstrate that a nitric oxide inhibitor such as L-NMMA has the potential to be beneficial when combined with oseltamivir in treating influenza virus infections.
Collapse
Affiliation(s)
- Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Ashley Dagley
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - E B Tarbet
- Department of Animal, Dairy and Veterinary Sciences, Institute for Antiviral Research, Utah State University, Logan, UT, USA
| |
Collapse
|
18
|
Yen HL. Current and novel antiviral strategies for influenza infection. Curr Opin Virol 2016; 18:126-34. [DOI: 10.1016/j.coviro.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
|
19
|
Zhang Y, Gao H, Liang W, Tang L, Yang Y, Wu X, Yu L, Chen P, Zheng S, Ou H, Li L. Efficacy of oseltamivir-peramivir combination therapy compared to oseltamivir monotherapy for Influenza A (H7N9) infection: a retrospective study. BMC Infect Dis 2016; 16:76. [PMID: 26864456 PMCID: PMC4748590 DOI: 10.1186/s12879-016-1383-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/25/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Since the novel H7N9 avian influenza outbreak occurred in China in 2013, neuraminidase inhibitors (NAIs) such as oseltamivir and peramivir have been used as first-line drugs to treat the influenza virus infection. This study aimed to compare the efficacy of oseltamivir-peramivir combination therapy versus oseltamivir monotherapy. METHODS A retrospective study of 82 H7N9 confirmed patients was conducted by reviewing medical charts at the First Affiliated Hospital of ZheJiang University in China from April 1, 2013 to Feb 28, 2014. The patients' clinical information was collected systematically, and we compared the virology and clinical data between oseltamivir monotherapy group (43 patients) and oseltamivir-peramivir combination group (39 patients). RESULTS The median duration from NAIs administration to H7N9 virus-negative in oseltamivir monotherapy group and oseltamivir-peramivir combination group was 6.50 and 7.00 days (p >0.05), respectively. The median decline of Day 2 to Day 0 (initiation of NAIs therapy) viral load was 0.00 and 0.69 log10 copies/μl (p >0.05) respectively in the monotherapy vs. combination therapy groups. The incidence of new Acute Respiratory Distress Syndrome during NAI administration was 63.89 and 77.78 % (p >0.05); while the mortality rates were 25.58 and 43.59 % (p >0.05) in the oseltamivir group vs. oseltamivir-peramivir group. CONCLUSIONS Our results suggest that in adults with H7N9 virus infection, the use of oseltamivir-peramivir combination therapy was not superior to oseltamivir monotherapy.
Collapse
Affiliation(s)
- Yan Zhang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Hainv Gao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Weifeng Liang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Lingling Tang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Yida Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Xiaoxin Wu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Liang Yu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Ping Chen
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Shufa Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Huilin Ou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| | - Lanjuan Li
- The State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, HangZhou, China.
| |
Collapse
|
20
|
Song JY, Noh JY, Choi WS, Cheong HJ, Kim WJ. Antiviral therapy in seasonal influenza and 2009 H1N1 pandemic influenza: Korean experiences and perspectives. Expert Rev Anti Infect Ther 2015; 13:1361-72. [PMID: 26256778 DOI: 10.1586/14787210.2015.1076334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Influenza is a major cause of substantial morbidity and mortality in humans every year. Vaccination is the main strategy to prevent influenza infection, but antiviral agents also play an important role in the control of both seasonal and pandemic influenza. During the influenza A/H1N1 pandemic in 2009, early prompt antiviral therapy may have reduced the severity of the influenza outcomes including pneumonia, hospitalization and mortality in the Republic of Korea. Since the 2009 H1N1 pandemic, there have been increasing usages of antiviral agents for the treatment of patients with seasonal influenza. Although currently rare, antiviral resistance among influenza viruses may emerge and increase with increased use of neuraminidase inhibitors. New agents with different modes of action are under investigation, including favipiravir, DAS181, nitazoxanide and broad-spectrum neutralizing monoclonal antibodies. Data are limited with respect to high-dose and combination antiviral therapies. So, clinical trials are warranted to evaluate diverse antiviral combinations that may be synergistic and less likely to induce breakthrough resistance.
Collapse
Affiliation(s)
- Joon Young Song
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Ji Yun Noh
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Won Suk Choi
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Hee Jin Cheong
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| | - Woo Joo Kim
- a 1 Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.,b 2 Transgovernmental Enterprise for Pandemic Influenza in Korea (TEPIK), Seoul, Republic of Korea
| |
Collapse
|
21
|
Alves Galvão MG, Rocha Crispino Santos MA, Alves da Cunha AJL. Amantadine and rimantadine for influenza A in children and the elderly. Cochrane Database Syst Rev 2014; 2014:CD002745. [PMID: 25415374 PMCID: PMC7093890 DOI: 10.1002/14651858.cd002745.pub4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Influenza is an acute respiratory illness caused by influenza A and B viruses. Complications may occur, especially among children and the elderly. OBJECTIVES To assess the effectiveness and safety of amantadine and rimantadine in preventing, treating and shortening the duration of influenza A in children and the elderly. SEARCH METHODS We searched CENTRAL (2014, Issue 9), MEDLINE (1966 to September week 4, 2014) and EMBASE (1980 to October 2014). SELECTION CRITERIA Randomised controlled trials (RCTs) or quasi-RCTs comparing amantadine and/or rimantadine with no intervention, placebo, other antivirals or different doses or schedules of amantadine or rimantadine in children and the elderly with influenza A. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the search results. We extracted and analysed data using the standard Cochrane methodology. MAIN RESULTS We identified 12 studies (2494 participants: 1586 children and 908 elderly) comparing amantadine and rimantadine with placebo, paracetamol (one trial: 69 children) or zanamivir (two trials: 545 elderly) to treat influenza A.Amantadine was effective in preventing influenza A in children (773 participants, risk ratio (RR) 0.11; 95% confidence interval (CI) 0.04 to 0.30). The assumed risk of influenza A in the control group was 10 per 100. The corresponding risk in the rimantadine group was one per 100 (95% CI 0 to 3). Nevertheless, the quality of the evidence was low and the safety of the drug was not well established.For treatment, rimantadine was beneficial in abating fever on day three of treatment in children: one selected study with low risk of bias, moderate evidence quality and 69 participants (RR 0.36; 95% CI 0.14 to 0.91). The assumed risk was 38 per 100. The corresponding risk in the rimantadine group was 14 per 100 (95% CI 5 to 34).Rimantadine did not show any prophylactic effect in the elderly. The quality of evidence was very low: 103 participants (RR 0.45; 95% CI 0.14 to 1.41). The assumed risk was 17 per 100. The corresponding risk in the rimantadine group was 7 per 100 (95% CI 2 to 23).There was no evidence of adverse effects caused by treatment with amantadine or rimantadine.We found no studies assessing amantadine in the elderly. AUTHORS' CONCLUSIONS The quality of the evidence combined with a lack of knowledge about the safety of amantadine and the limited benefits of rimantadine, do not indicate that amantadine and rimantadine compared to control (placebo or paracetamol) could be useful in preventing, treating and shortening the duration of influenza A in children and the elderly.
Collapse
Affiliation(s)
- Márcia G Alves Galvão
- Municipal Secretariat of HealthAvenida Ayrton Senna, 250/ 205Barra da Tijuca. Alfa Barra 1Rio de JaneiroRJBrazil22793‐000
| | | | - Antonio JL Alves da Cunha
- School of Medicine, Federal University of Rio de JaneiroDepartment of PediatricsAv. Carlos Chagas Filho, 373Edificio do CCS ‐ Bloco K ‐ 2o. andar, Sala K49Rio de JaneiroRio de JaneiroBrazil21941‐902
| | | |
Collapse
|
22
|
Abstract
Observational data suggest that the treatment of influenza infection with neuraminidase inhibitors decreases progression to more severe illness, especially when treatment is started soon after symptom onset. However, even early treatment might fail to prevent complications in some patients, particularly those infected with novel viruses such as the 2009 pandemic influenza A H1N1, avian influenza A H5N1 virus subtype, or the avian influenza A H7N9 virus subtype. Furthermore, treatment with one antiviral drug might promote the development of antiviral resistance, especially in immunocompromised hosts and critically ill patients. An obvious strategy to optimise antiviral therapy is to combine drugs with different modes of action. Because host immune responses to infection might also contribute to illness pathogenesis, improved outcomes might be gained from the combination of antiviral therapy with drugs that modulate the immune response in an infected individual. We review available data from preclinical and clinical studies of combination antiviral therapy and of combined antiviral-immunomodulator therapy for influenza. Early-stage data draw attention to several promising antiviral combinations with therapeutic potential in severe infections, but there remains a need to substantiate clinical benefit. Combination therapies with favourable experimental data need to be tested in carefully designed aclinical trials to assess their efficacy.
Collapse
|
23
|
Escuret V, Collins PJ, Casalegno JS, Vachieri SG, Cattle N, Ferraris O, Sabatier M, Frobert E, Caro V, Skehel JJ, Gamblin S, Valla F, Valette M, Ottmann M, McCauley JW, Daniels RS, Lina B. A novel I221L substitution in neuraminidase confers high-level resistance to oseltamivir in influenza B viruses. J Infect Dis 2014; 210:1260-9. [PMID: 24795482 PMCID: PMC4176448 DOI: 10.1093/infdis/jiu244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED Influenza B viruses with a novel I221L substitution in neuraminidase (NA) conferring high-level resistance to oseltamivir were isolated from an immunocompromised patient after prolonged oseltamivir treatment. METHODS Enzymatic characterization of the NAs (Km, Ki) and the in vitro fitness of viruses carrying wild-type or mutated (I221L) NA genes were evaluated. Proportions of wild-type and mutated NA genes were directly quantified in the patient samples. Structural characterizations by X-ray crystallography of a wild-type and I221L variant NA were performed. RESULTS The Km and Ki revealed that the I221L variant NA had approximately 84 and 51 times lower affinity for oseltamivir carboxylate and zanamivir, respectively, compared with wild-type NA. Viruses with a wild-type or I221L variant NA had similar growth kinetics in Madin-Darby canine kidney (MDCK) cells, and 5 passages in MDCK cells revealed no reversion of the I221L substitution. The crystal structure of the I221L NA and oseltamivir complex showed that the leucine side chain protrudes into the hydrophobic pocket of the active site that accommodates the pentyloxy substituent of oseltamivir. CONCLUSIONS Enzyme kinetic and NA structural analyses provide an explanation for the high level of resistance to oseltamivir while retaining good fitness of viruses carrying I221L variant NA.
Collapse
Affiliation(s)
- Vanessa Escuret
- Laboratoire de Virologie et Centre National de Référence virus influenzae Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, and
| | | | - Jean-Sébastien Casalegno
- Laboratoire de Virologie et Centre National de Référence virus influenzae Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, and
| | | | - Nicholas Cattle
- WHO Collaborating Centre for Reference and Research on Influenza, Division of Virology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Olivier Ferraris
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, and
| | - Murielle Sabatier
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, and
| | - Emilie Frobert
- Laboratoire de Virologie et Centre National de Référence virus influenzae Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, and
| | - Valérie Caro
- Genotyping of Pathogens and Public Health Platform, Institut Pasteur, Paris, France
| | | | | | - Frédéric Valla
- Service de Réanimation Pédiatrique, Hôpital Femme Mère Enfant, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron
| | - Martine Valette
- Laboratoire de Virologie et Centre National de Référence virus influenzae
| | - Michèle Ottmann
- Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, and
| | - John W McCauley
- WHO Collaborating Centre for Reference and Research on Influenza, Division of Virology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Rodney S Daniels
- WHO Collaborating Centre for Reference and Research on Influenza, Division of Virology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Bruno Lina
- Laboratoire de Virologie et Centre National de Référence virus influenzae Laboratoire Virpath EA4610, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Université de Lyon, and
| |
Collapse
|
24
|
Pizzorno A, Abed Y, Rhéaume C, Boivin G. Oseltamivir-zanamivir combination therapy is not superior to zanamivir monotherapy in mice infected with influenza A(H3N2) and A(H1N1)pdm09 viruses. Antiviral Res 2014; 105:54-8. [PMID: 24583158 DOI: 10.1016/j.antiviral.2014.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 11/15/2022]
Abstract
The efficacy of oseltamivir-zanamivir combination therapy compared to that of monotherapy was evaluated in mice infected with influenza A(H3N2) or A(H1N1)pdm09 viruses. For A(H3N2) virus, zanamivir monotherapy and oseltamivir-zanamivir combination showed significant reduction of mean weight loss compared to oseltamivir. Zanamivir monotherapy also conferred decreased mortality, weight loss and lung viral titers (LVT) compared to oseltamivir for A(H1N1)pdm09 wild-type virus. Intermediate benefits were observed for the oseltamivir-zanamivir combination. For the oseltamivir-resistant A(H1N1)pdm09 H275Y virus, the efficacy of oseltamivir-zanamivir was comparable to that of zanamivir and significantly higher than that of oseltamivir in terms of survival, weight loss and LVT.
Collapse
Affiliation(s)
- Andrés Pizzorno
- Research Center in Infectious Diseases of the CHUQ-CHUL, Québec City, QC, Canada; Laval University, Québec City, QC, Canada
| | - Yacine Abed
- Research Center in Infectious Diseases of the CHUQ-CHUL, Québec City, QC, Canada; Laval University, Québec City, QC, Canada
| | - Chantal Rhéaume
- Research Center in Infectious Diseases of the CHUQ-CHUL, Québec City, QC, Canada; Laval University, Québec City, QC, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL, Québec City, QC, Canada; Laval University, Québec City, QC, Canada.
| |
Collapse
|
25
|
Choi WS, Baek JH, Seo YB, Kee SY, Jeong HW, Lee HY, Eun BW, Choo EJ, Lee J, Kim YK, Song JY, Wie SH, Lee JS, Cheong HJ, Kim WJ. Severe influenza treatment guideline. Korean J Intern Med 2014; 29:132-47. [PMID: 24574848 PMCID: PMC3932389 DOI: 10.3904/kjim.2014.29.1.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/20/2023] Open
Affiliation(s)
- Won Suk Choi
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ji Hyeon Baek
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Yu Bin Seo
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Sae Yoon Kee
- Department of Internal Medicine, Konkuk University School of Medicine, Chungju, Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Hee Young Lee
- Gachon University Gil Hospital Cancer Center, Gachon University Gil Medical Center, Incheon, Korea
| | - Byung Wook Eun
- Department of Pediatrics, Eulji University School of Medicine, Daejeon, Korea
| | - Eun Ju Choo
- Department of Internal Medicine, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jacob Lee
- Department of Internal Medicine, Hallym University College of Medicine, Seoul, Korea
| | - Young Keun Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Seong-Heon Wie
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jin Soo Lee
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | |
Collapse
|
26
|
Kamali A, Holodniy M. Influenza treatment and prophylaxis with neuraminidase inhibitors: a review. Infect Drug Resist 2013; 6:187-98. [PMID: 24277988 PMCID: PMC3838482 DOI: 10.2147/idr.s36601] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Influenza virus is a pathogen that causes morbidity and mortality worldwide. Whereas vaccination is important for prevention of disease, given its limitations, antiviral therapy is at the forefront of treatment and also plays a role in prevention. Currently, two classes of antiviral medications, the adamantanes and the neuraminidase inhibitors, are approved for treatment. Given the resistance patterns of circulating influenza, adamantanes are not recommended. Within the US, two neuraminidase inhibitors are currently approved for both treatment and prevention, while worldwide there are four available. In this review, we will briefly discuss the epidemiology and pathology of influenza and then discuss neuraminidase inhibitors: their mechanism of action, resistance, development, and future applications.
Collapse
Affiliation(s)
- Amanda Kamali
- Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
27
|
Smee DF, Tarbet EB, Furuta Y, Morrey JD, Barnard DL. Synergistic combinations of favipiravir and oseltamivir against wild-type pandemic and oseltamivir-resistant influenza A virus infections in mice. Future Virol 2013; 8:1085-1094. [PMID: 24563658 DOI: 10.2217/fvl.13.98] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Favipiravir and oseltamivir are antiviral compounds used for the treatment of influenza infections. We have aimed to investigate the efficacy of the compounds in combination to treat influenza H1N1 virus infections in mice. MATERIALS & METHODS Mice infected with pandemic influenza A/California/04/2009 (H1N1pdm) virus or an oseltamivir-resistant (H275Y neuraminidase mutation) influenza A/Mississippi/ 3/2001 (H1N1) virus were treated orally with inhibitors twice a day for 5 days starting 4 h after infection. RESULTS Complete protection from death was afforded by favipiravir treatments of 100 mg/kg/day, but lower doses were less effective. Combinations of oseltamivir (1 and 3 mg/kg/day) with favipiravir (3, 10 and 30 mg/kg/day) resulted in a synergistic improvement in survival rates against H1N1pdm infections. Significant reductions in lung virus titers also occurred. Against the H275Y virus infection, oseltamivir alone was only 30% protective from death at 100 mg/kg/day, but combinations of the two compounds produced a synergistic improvement in survival rate. CONCLUSION The utility of treating H1N1 influenza virus infections with oseltamivir and favipiravir in combination has been established.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, USA
| | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, USA
| | | | - John D Morrey
- Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Dale L Barnard
- Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, USA
| |
Collapse
|