1
|
Zhu T, Qian J, Shen Z, Shao H, Qian K, Jin W, Qin A. Vector-delivered artificial miRNA effectively inhibits Porcine epidemic diarrhea virus replication. Virol J 2023; 20:164. [PMID: 37488599 PMCID: PMC10364413 DOI: 10.1186/s12985-023-02129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Porcine epidemic diarrhea virus (PEDV) is an α-coronavirus that causes highly contagious intestinal infectious disease, involving clinically characterized by diarrhea, dehydration, vomiting, and high mortality to suckling piglets. As a strategy for antiviral therapy, artificial microRNA (amiRNA) mediated suppression of viral replication has recently become increasingly important. In this study, we evaluated the advantages of using an amiRNA vector against PEDV. METHODS In this study, we evaluated the advantages of using an amiRNA vector against PEDV. We designed two single amiRNA sequences for different conserved sequences of the PEDV S and N genes, and tested their inhibitory effects on PEDV in Vero cells. RESULTS It was obvious from the CCK-8 results that the transient transfection of amiRNA was non-toxic to the cells. In addition, our results showed that the transient expression of two amiRNAs (amiRNA-349 and amiRNA-1447) significantly reduced the expression of viral RNA and protein in the cells. The TCID50 results showed that the release of virus particles into the culture supernatant was significantly reduced, with an effect as high as 90%. To avoid virus mutation escape, the above two single amiRNA sequences were tandem in this study (amiRNA-349 + 1447), enabling a single microRNA to be expressed simultaneously. The real-time PCR and Western blot results showed that the inhibitory effect was significantly enhanced in each of the different time periods. The TCID50 results showed that the release of virus particles in the culture supernatant was significantly reduced at the different time periods. CONCLUSIONS In summary, these results suggest that an RNAi based on amiRNA targeting the conserved region of the virus is an effective method to improve PEDV nucleic acid inhibitors and provide a novel treatment strategy for PEDV infection.
Collapse
Affiliation(s)
- Tingfan Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Jinhan Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Zijun Shen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Hongxia Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China
| | - Kun Qian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China
| | - Wenjie Jin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China.
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China.
| | - Aijian Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu Province, China
- Ministry of Education Key Laboratory of Poultry Preventive Medicine, Yangzhou, 225009, Jiangsu Province, China
| |
Collapse
|
2
|
Agarwal A, Sarma DK, Chaurasia D, Maan HS. Novel molecular approaches to combat vectors and vector-borne viruses: Special focus on RNA interference (RNAi) mechanisms. Acta Trop 2022; 233:106539. [PMID: 35623398 DOI: 10.1016/j.actatropica.2022.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Vector-borne diseases, such as dengue, chikungunya, zika, yellow fever etc pose significant burden among the infectious diseases globally, especially in tropical and sub-tropical regions. Globalization, deforestation, urbanization, climate change, uncontrolled population growth, inadequate waste management and poor vector-management infrastructure have all contributed to the expansion of vector habitats and subsequent increase in vector-borne diseases throughout the world. Conventional vector control methods, such as use of insecticides, have significant negative environmental repercussions in addition to developing resistance in vectors. Till date, a very few vaccines or antiviral therapies have been approved for the treatment of vector borne diseases. In this review, we have discussed emerging molecular approaches like CRISPR (clustered regularly interspaced short palindromic repeats)/Cas-9, sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), Wolbachia (virus transmission blocking) and RNA interference (RNAi) to combat vector and vector-borne viruses. Due to the extensive advancements in RNAi research, a special focus has been given on its types, biogenesis, mechanism of action, delivery and experimental studies evaluating their application as anti-mosquito and anti-viral agent. These technologies appear to be highly promising in terms of contributing to vector control and antiviral drug development, and hence can be used to reduce global vector and vector-borne disease burden.
Collapse
Affiliation(s)
- Ankita Agarwal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India.
| | - Devojit Kumar Sarma
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, Madhya Pradesh, India
| | - Deepti Chaurasia
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| | - Harjeet Singh Maan
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal 462001, Madhya Pradesh, India
| |
Collapse
|
3
|
A new self-attenuated therapeutic influenza vaccine that uses host cell-restricted attenuation by artificial microRNAs. Int J Pharm 2022; 612:121325. [PMID: 34883209 PMCID: PMC8871448 DOI: 10.1016/j.ijpharm.2021.121325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023]
Abstract
New strategies are urgently needed for developing vaccines and/or anti-viral drugs against influenza viruses, because antigenic shift and drift inevitably occurs in circulating strains each year, and new strains resistant to anti-viral drugs have recently emerged. In our study, we designed and incorporated artificial microRNAs (amiRNAs) into the NA segment of rescued influenza viruses to separately target two host genes, Cdc2-like kinase 1 (CLK1) and SON DNA binding protein (SON), which were found to play an essential role in virus replication. Mouse epithelial fibroblast (MEF) or human lung carcinoma A549 cells infected with engineered influenza PR8 viruses expressing amiR-30CLK1 (PR8-amiR-30CLK1) or amiR-93SON (PR8-amiR-93SON) had reduced expression of host proteins CLK1 and SON, respectively. All engineered influenza viruses functioned as attenuated vaccines, induced significantly higher antibody responses, and provided greater protective efficacy. In addition, they were found to be safe, based on the mouse weight changes and clinical signs observed. In contrast to the engineered viruses targeting SON, mice treated with engineered viruses targeting CLK1 recovered from weight loss and survived lethal infection by 6 h after lethal-dose PR8 infection, suggesting that our PR8-amiR-30CLK1 self-attenuated influenza virus (SAIV) could be used as a new therapeutic influenza vaccine.
Collapse
|
4
|
Hucke FIL, Bugert JJ. Current and Promising Antivirals Against Chikungunya Virus. Front Public Health 2020; 8:618624. [PMID: 33384981 PMCID: PMC7769948 DOI: 10.3389/fpubh.2020.618624] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.
Collapse
|
5
|
Roy E, Byrareddy SN, Reid SP. Role of MicroRNAs in Bone Pathology during Chikungunya Virus Infection. Viruses 2020; 12:E1207. [PMID: 33114216 PMCID: PMC7690852 DOI: 10.3390/v12111207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus, transmitted by mosquitoes, which causes Chikungunya fever with symptoms of fever, rash, headache, and joint pain. In about 30%-40% of cases, the infection leads to polyarthritis and polyarthralgia. Presently, there are no treatment strategies or vaccine for Chikungunya fever. Moreover, the mechanism of CHIKV induced bone pathology is not fully understood. The modulation of host machinery is known to be essential in establishing viral pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate major cellular functions by modulating gene expression. Fascinatingly, recent reports have indicated the role of miRNAs in regulating bone homeostasis and altered expression of miRNAs in bone-related pathological diseases. In this review, we summarize the altered expression of miRNAs during CHIKV pathogenesis and the possible role of miRNAs during bone homeostasis in the context of CHIKV infection. A holistic understanding of the different signaling pathways targeted by miRNAs during bone remodeling and during CHIKV-induced bone pathology may lead to identification of useful biomarkers or therapeutics.
Collapse
Affiliation(s)
- Enakshi Roy
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - St Patrick Reid
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| |
Collapse
|
6
|
Lundstrom K. Self-Replicating RNA Viruses for RNA Therapeutics. Molecules 2018; 23:molecules23123310. [PMID: 30551668 PMCID: PMC6321401 DOI: 10.3390/molecules23123310] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
Self-replicating single-stranded RNA viruses such as alphaviruses, flaviviruses, measles viruses, and rhabdoviruses provide efficient delivery and high-level expression of therapeutic genes due to their high capacity of RNA replication. This has contributed to novel approaches for therapeutic applications including vaccine development and gene therapy-based immunotherapy. Numerous studies in animal tumor models have demonstrated that self-replicating RNA viral vectors can generate antibody responses against infectious agents and tumor cells. Moreover, protection against challenges with pathogenic Ebola virus was obtained in primates immunized with alphaviruses and flaviviruses. Similarly, vaccinated animals have been demonstrated to withstand challenges with lethal doses of tumor cells. Furthermore, clinical trials have been conducted for several indications with self-amplifying RNA viruses. In this context, alphaviruses have been subjected to phase I clinical trials for a cytomegalovirus vaccine generating neutralizing antibodies in healthy volunteers, and for antigen delivery to dendritic cells providing clinically relevant antibody responses in cancer patients, respectively. Likewise, rhabdovirus particles have been subjected to phase I/II clinical trials showing good safety and immunogenicity against Ebola virus. Rhabdoviruses have generated promising results in phase III trials against Ebola virus. The purpose of this review is to summarize the achievements of using self-replicating RNA viruses for RNA therapy based on preclinical animal studies and clinical trials in humans.
Collapse
|
7
|
Sharma H, Tripathi A, Kumari B, Vrati S, Banerjee A. Artificial MicroRNA-Mediated Inhibition of Japanese Encephalitis Virus Replication in Neuronal Cells. Nucleic Acid Ther 2018; 28:357-365. [PMID: 30457923 PMCID: PMC6277082 DOI: 10.1089/nat.2018.0743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Artificial microRNA (amiRNA)-mediated inhibition of viral replication has recently gained importance as a strategy for antiviral therapy. In this study, we evaluated the benefit of using the amiRNA vector against Japanese encephalitis virus (JEV). We designed three single amiRNA sequences against the consensus sequence of 3' untranslated region (3'UTR) of JEV and tested their efficacy against cell culture-grown JEV Vellore strain (P20778) in neuronal cells. The binding ability of three amiRNAs on 3'UTR region was tested in vitro in HEK293T cells using a JEV 3'UTR tagged with luciferase reporter vector. Transient transfection of amiRNAs was nontoxic to cells as evident from the MTT assay and caused minimal induction in interferon-stimulated gene expression. Furthermore, our result suggested that transient expression of two amiRNAs (amiRNA #1 and amiRNA #2) significantly reduced intracellular viral RNA and nonstructural 1 (NS1) protein, as well as diminished infectious viral particle release up to 95% in the culture supernatant as evident from viral plaque reduction assay. Overall, our results indicated that RNA interference based on amiRNAs targeting viral conserved regions at 3'UTR was a useful approach for improvements of nucleic acid inhibitors against JEV.
Collapse
Affiliation(s)
- Himani Sharma
- 1 Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India.,2 Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Aarti Tripathi
- 1 Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Bharti Kumari
- 1 Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| | - Sudhanshu Vrati
- 1 Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India.,2 Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Arup Banerjee
- 1 Vaccine and Infectious Disease Research Center (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India.,2 Regional Center for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
8
|
Latest development on RNA-based drugs and vaccines. Future Sci OA 2018; 4:FSO300. [PMID: 29796303 PMCID: PMC5961404 DOI: 10.4155/fsoa-2017-0151] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 12/25/2022] Open
Abstract
Drugs and vaccines based on mRNA and RNA viruses show great potential and direct translation in the cytoplasm eliminates chromosomal integration. Limitations are associated with delivery and stability issues related to RNA degradation. Clinical trials on RNA-based drugs have been conducted in various disease areas. Likewise, RNA-based vaccines for viral infections and various cancers have been subjected to preclinical and clinical studies. RNA delivery and stability improvements include RNA structure modifications, targeting dendritic cells and employing self-amplifying RNA. Single-stranded RNA viruses possess self-amplifying RNA, which can provide extreme RNA replication in the cytoplasm to support RNA-based drug and vaccine development. Although oligonucleotide-based approaches have demonstrated potential, the focus here is on mRNA- and RNA virus-based methods. Drug development has suffered from inefficiency, side effects and high costs. For this reason novel approaches for drug discovery are of great importance. RNA-based methods provide the advantage of targeting ‘production’ of drugs to diseased cells and vaccines to immune response-stimulating cells. RNA drugs have demonstrated therapeutic efficacy in eye and heart diseases and in various cancers in clinical trials. Likewise, RNA-based vaccines have provided protection against challenges with lethal doses of viruses such as Ebola and cancer cells in animal models.
Collapse
|
9
|
Saha A, Bhagyawant SS, Parida M, Dash PK. Vector-delivered artificial miRNA effectively inhibited replication of Chikungunya virus. Antiviral Res 2016; 134:42-49. [PMID: 27565991 PMCID: PMC7113671 DOI: 10.1016/j.antiviral.2016.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/02/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Abstract
Chikungunya virus (CHIKV) has emerged as one of the most significant arboviral threats in many parts of the world. In spite of large scale morbidity, and long lasting polyarthralgia, no licensed vaccine or antivirals are available for the clinical management of CHIKV infection. In this study, a novel RNA interference based strategy has been adopted for effective inhibition of CHIKV. Four artificial microRNAs (amiRNAs) were designed to target different regions of CHIKV genome. These amiRNAs significantly inhibited CHIKV replication in Vero cells at both RNA and protein levels as assessed by qRT-PCR, immunoblotting and immunofluorescence techniques. Further inhibition of the infectious CHIKV up to 99.8% was demonstrated by plaque reduction assay. Concatemerization of amiRNA resulted in higher inhibition of CHIKV than individual amiRNAs. In addition, we studied the effect of combination of RNAi based therapy with other classical antivirals like chloroquine, ribavirin and mycophenolic acid, that helped in understanding the rational selection of RNAi based combination therapy. These findings provide a promising avenue for the development of novel amiRNA or combination based therapeutics against emerging CHIKV. amiRNAs targeting different ORF of CHIKV was designed. Significant Inhibition of CHIKV replication through amiRNA was demonstrated. Concatenated amiRNAs results in higher viral inhibition. Combination of RNAi with classical drugs may obliterate failure of monotherapy.
Collapse
Affiliation(s)
- Amrita Saha
- Virology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | | | - Manmohan Parida
- Virology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Paban Kumar Dash
- Virology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
10
|
Abstract
RNA viruses are characterized by their efficient capacity to replicate at high levels in mammalian cells leading to high expression of foreign genes and making them attractive candidates for vectors engineered for vaccine development and gene therapy. Particularly, alphaviruses, flaviviruses, rhabdoviruses and measles viruses have been applied for immunization against infectious agents and tumors. Application of replicon RNA, DNA/RNA-layered vectors and replication-deficient viral particles have provided strong immune responses and protection against challenges with lethal doses of viral pathogens or tumor cells. Moreover, tumor regression has been obtained when RNA replicons have been administered in the form of RNA, DNA and viral particles, including replication-proficient oncolytic particles.
Collapse
|
11
|
Samir M, Pessler F. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications. Front Vet Sci 2016; 3:22. [PMID: 27092305 PMCID: PMC4819147 DOI: 10.3389/fvets.2016.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Frank Pessler
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
12
|
The ubiquitin proteasome system plays a role in venezuelan equine encephalitis virus infection. PLoS One 2015; 10:e0124792. [PMID: 25927990 PMCID: PMC4415917 DOI: 10.1371/journal.pone.0124792] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 03/11/2015] [Indexed: 01/20/2023] Open
Abstract
Many viruses have been implicated in utilizing or modulating the Ubiquitin Proteasome System (UPS) to enhance viral multiplication and/or to sustain a persistent infection. The mosquito-borne Venezuelan equine encephalitis virus (VEEV) belongs to the Togaviridae family and is an important biodefense pathogen and select agent. There are currently no approved vaccines or therapies for VEEV infections; therefore, it is imperative to identify novel targets for therapeutic development. We hypothesized that a functional UPS is required for efficient VEEV multiplication. We have shown that at non-toxic concentrations Bortezomib, a FDA-approved inhibitor of the proteasome, proved to be a potent inhibitor of VEEV multiplication in the human astrocytoma cell line U87MG. Bortezomib inhibited the virulent Trinidad donkey (TrD) strain and the attenuated TC-83 strain of VEEV. Additional studies with virulent strains of Eastern equine encephalitis virus (EEEV) and Western equine encephalitis virus (WEEV) demonstrated that Bortezomib is a broad spectrum inhibitor of the New World alphaviruses. Time-of-addition assays showed that Bortezomib was an effective inhibitor of viral multiplication even when the drug was introduced many hours post exposure to the virus. Mass spectrometry analyses indicated that the VEEV capsid protein is ubiquitinated in infected cells, which was validated by confocal microscopy and immunoprecipitation assays. Subsequent studies revealed that capsid is ubiquitinated on K48 during early stages of infection which was affected by Bortezomib treatment. This study will aid future investigations in identifying host proteins as potential broad spectrum therapeutic targets for treating alphavirus infections.
Collapse
|
13
|
Zhang H, Tang X, Zhu C, Song Y, Yin J, Xu J, Ertl HCJ, Zhou D. Adenovirus-mediated artificial MicroRNAs targeting matrix or nucleoprotein genes protect mice against lethal influenza virus challenge. Gene Ther 2015; 22:653-62. [PMID: 25835311 DOI: 10.1038/gt.2015.31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/17/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023]
Abstract
Influenza virus (IV) infection is a major public health problem, causing millions of cases of severe illness and as many as 500 000 deaths each year worldwide. Given the limitations of current prevention or treatment of acute influenza, novel therapies are needed. RNA interference (RNAi) through microRNAs (miRNA) is an emerging technology that can suppress virus replication in vitro and in vivo. Here, we describe a novel strategy for the treatment of infuenza based on RNAi delivered by a replication-defective adenovirus (Ad) vector, derived from chimpanzee serotype 68 (AdC68). Our results showed that artificial miRNAs (amiRNAs) specifically targeting conserved regions of the IV genome could effectively inhibit virus replication in human embryonic kidney 293 cells. Moreover, our results demonstrated that prophylactic treatment with AdC68 expressing amiRNAs directed against M1, M2 or nucleoprotein genes of IV completely protected mice from homologous A/PR8 virus challenge and partially protected the mice from heterologous influenza A virus strains such as H9N2 and H5N1. Collectively, our data demonstrate that amiRNAs targeting the conserved regions of influenza A virus delivered by Ad vectors should be pursued as a novel strategy for prophylaxis of IV infection in humans and animals.
Collapse
Affiliation(s)
- H Zhang
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - X Tang
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - C Zhu
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Y Song
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - J Yin
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - J Xu
- Shanghai Public Health Clinical Center, the Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology of Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - H C J Ertl
- The Wistar Institute, Philadelphia, PA, USA
| | - D Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
14
|
Patel AK, Shah RK, Patel UA, Tripathi AK, Joshi CG. Goat activin receptor type IIB knockdown by muscle specific promoter driven artificial microRNAs. J Biotechnol 2014; 187:87-97. [PMID: 25107506 DOI: 10.1016/j.jbiotec.2014.07.450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/20/2014] [Accepted: 07/25/2014] [Indexed: 01/30/2023]
Abstract
Activin receptor type IIB (ACVR2B) is a transmembrane receptor which mediates signaling of TGF beta superfamily ligands known to function in regulation of muscle mass, embryonic development and reproduction. ACVR2B antagonism has shown to enhance the muscle growth in several disease and transgenic models. Here, we show ACVR2B knockdown by RNA interference using muscle creatine kinase (MCK) promoter driven artificial microRNAs (amiRNAs). Among the various promoter elements tested, the ∼1.26 kb MCK promoter region showed maximum transcriptional activity in goat myoblasts cells. We observed up to 20% silencing in non-myogenic 293T cells and up to 32% silencing in myogenic goat myoblasts by MCK directed amiRNAs by transient transfection. Goat myoblasts stably integrated with MCK directed amiRNAs showed merely 8% silencing in proliferating myoblasts which was increased to 34% upon induction of differentiation at transcript level whereas up to 57% silencing at protein level. Knockdown of ACVR2B by 5'-UTR derived amiRNAs resulted in decreased SMAD2/3 signaling, increased expression of myogenic regulatory factors (MRFs) and enhanced proliferation and differentiation of myoblasts. Unexpectedly, knockdown of ACVR2B by 3'-UTR derived amiRNAs resulted in increased SMAD2/3 signaling, reduced expression of MRFs and suppression of myogenesis. Our study offers muscle specific knockdown of ACVR2B as a potential strategy to enhance muscle mass in the farm animal species.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India
| | - Ravi K Shah
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India
| | - Utsav A Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India
| | - Ajai K Tripathi
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand 388001, India.
| |
Collapse
|
15
|
Abstract
RNA-based approaches have provided novel alternatives for modern drug discovery. The application of RNA as therapeutic agents has, until recently, been hampered by issues related to poor delivery and stability, but chemical modifications and new delivery approaches have increased progress. Moreover, the discovery of the importance of RNA in gene regulation and gene silencing has revealed new drug targets, especially related to treatment of cancer and other diseases. Recent engineering of small molecules designed from RNA sequences to target miRNAs opens up new possibilities in drug development. Furthermore, RNA-based vaccines have been engineered applying RNA virus vectors and non-viral delivery for vaccine development.
Collapse
|
16
|
Cunha MV, Inácio J, Freimanis G, Fusaro A, Granberg F, Höper D, King DP, Monne I, Orton R, Rosseel T. Next-generation sequencing in veterinary medicine: how can the massive amount of information arising from high-throughput technologies improve diagnosis, control, and management of infectious diseases? Methods Mol Biol 2014; 1247:415-36. [PMID: 25399113 PMCID: PMC7123048 DOI: 10.1007/978-1-4939-2004-4_30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of high-throughput molecular technologies and associated bioinformatics has dramatically changed the capacities of scientists to produce, handle, and analyze large amounts of genomic, transcriptomic, and proteomic data. A clear example of this step-change is represented by the amount of DNA sequence data that can be now produced using next-generation sequencing (NGS) platforms. Similarly, recent improvements in protein and peptide separation efficiencies and highly accurate mass spectrometry have promoted the identification and quantification of proteins in a given sample. These advancements in biotechnology have increasingly been applied to the study of animal infectious diseases and are beginning to revolutionize the way that biological and evolutionary processes can be studied at the molecular level. Studies have demonstrated the value of NGS technologies for molecular characterization, ranging from metagenomic characterization of unknown pathogens or microbial communities to molecular epidemiology and evolution of viral quasispecies. Moreover, high-throughput technologies now allow detailed studies of host-pathogen interactions at the level of their genomes (genomics), transcriptomes (transcriptomics), or proteomes (proteomics). Ultimately, the interaction between pathogen and host biological networks can be questioned by analytically integrating these levels (integrative OMICS and systems biology). The application of high-throughput biotechnology platforms in these fields and their typical low-cost per information content has revolutionized the resolution with which these processes can now be studied. The aim of this chapter is to provide a current and prospective view on the opportunities and challenges associated with the application of massive parallel sequencing technologies to veterinary medicine, with particular focus on applications that have a potential impact on disease control and management.
Collapse
Affiliation(s)
- Mónica V. Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, IP and Centro de Biologia Ambiental, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - João Inácio
- Instituto Nacional de Investigação Agrária e Veterinária, IP, Lisboa, Portugal and School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Patel AK, Shah RK, Parikh IK, Joshi CG. Goat activin receptor type IIB knockdown by artificial microRNAs in vitro. Appl Biochem Biotechnol 2014; 174:424-36. [PMID: 25080379 DOI: 10.1007/s12010-014-1071-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
Activin receptor type IIB (ACVR2B) has been known to negatively regulate the muscle growth through mediating the action of transforming growth factor beta superfamily ligands. Recently, the artificial microRNAs (amiRNAs) which are processed by endogenous miRNA processing machinery have been proposed as promising approach for efficient gene knockdown. We evaluated amiRNAs targeting goat ACVR2B in HEK293T and goat myoblasts cells. The amiRNAs were designed based on the miR-155 backbone and cloned in 5'- and 3'-UTR of GFP reporter gene under the CMV promoter. Although both 5'- and 3'-UTR-amiRNAs vectors showed efficient synthesis of GFP transcripts, amiRNAs in 5'-UTR drastically affected GFP protein synthesis in transfected goat myoblast cells. Among the four amiRNAs targeting ACVR2B derived from either 5'- or 3'-UTR, ami318 showed highest silencing efficiency against exogenously co-expressed ACVR2B in both 293T and goat myoblast cells whereas ami204 showed highest silencing efficiency against endogenous ACVR2B in goat myoblasts cells. The 3'-UTR-derived amiRNA exerted higher knockdown efficiency against endogenous ACVR2B at transcript level whereas 5'-UTR-derived amiRNAs exerted higher knockdown efficiency at protein level. The expression of ACVR2B showed positive correlation with the expression of MYOD (r = 0.744; p = 0.009) and MYOG (r = 0.959; p = 0.000) in the amiRNA-transfected myoblasts. Although both 5'- and 3'-UTR-amiRNA vectors led to substantial induction of interferon response, the magnitude of the response was found to be higher with the 3'-UTR-amiRNA vectors.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | | | | | | |
Collapse
|
18
|
Alphavirus-based vaccines. Viruses 2014; 6:2392-415. [PMID: 24937089 PMCID: PMC4074933 DOI: 10.3390/v6062392] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Alphavirus vectors have demonstrated high levels of transient heterologous gene expression both in vitro and in vivo and, therefore, possess attractive features for vaccine development. The most commonly used delivery vectors are based on three single-stranded encapsulated alphaviruses, namely Semliki Forest virus, Sindbis virus and Venezuelan equine encephalitis virus. Alphavirus vectors have been applied as replication-deficient recombinant viral particles and, more recently, as replication-proficient particles. Moreover, in vitro transcribed RNA, as well as layered DNA vectors have been applied for immunization. A large number of highly immunogenic viral structural proteins expressed from alphavirus vectors have elicited strong neutralizing antibody responses in multispecies animal models. Furthermore, immunization studies have demonstrated robust protection against challenges with lethal doses of virus in rodents and primates. Similarly, vaccination with alphavirus vectors expressing tumor antigens resulted in prophylactic protection against challenges with tumor-inducing cancerous cells. As certain alphaviruses, such as Chikungunya virus, have been associated with epidemics in animals and humans, attention has also been paid to the development of vaccines against alphaviruses themselves. Recent progress in alphavirus vector development and vaccine technology has allowed conducting clinical trials in humans.
Collapse
|