1
|
Sabariegos R, Ortega-Prieto AM, Díaz-Martínez L, Grande-Pérez A, García Crespo C, Gallego I, de Ávila AI, Albentosa-González L, Soria ME, Gastaminza P, Domingo E, Perales C, Mas A. Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools. PLoS Pathog 2022; 18:e1010210. [PMID: 35085375 PMCID: PMC8794218 DOI: 10.1371/journal.ppat.1010210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/30/2022] Open
Abstract
In the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the nucleoside guanosine (Gua). Here, we report that Gua, and not the other standard nucleosides, inhibits HCV replication in human hepatoma cells. Gua did not directly inhibit the in vitro polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-phosphates (NDPs and NTPs), leading to deficient HCV RNA replication and reduction of infectious progeny virus production. Changes in the concentrations of NTPs or NDPs modified NS5B RNA polymerase activity in vitro, in particular de novo RNA synthesis and template switching. Furthermore, the Gua-mediated changes were associated with a significant increase in the number of indels in viral RNA, which may account for the reduction of the specific infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper NTP:NDP balance appears to be critical to ensure HCV polymerase fidelity and minimal production of defective genomes.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
| | - Ana María Ortega-Prieto
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHMS-UMA-CSIC), Málaga, Spain
- Área de Genética, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Carlos García Crespo
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I. de Ávila
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
| | - Laura Albentosa-González
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Pablo Gastaminza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Celia Perales
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- * E-mail: (AM); (CP); (ED)
| | - Antonio Mas
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla-La Mancha, Albacete, Spain
- Unidad de Biomedicina UCLM-CSIC, Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
- * E-mail: (AM); (CP); (ED)
| |
Collapse
|
2
|
Sabariegos R, Albentosa-González L, Palmero B, Clemente-Casares P, Ramírez E, García-Crespo C, Gallego I, de Ávila AI, Perales C, Domingo E, Mas A. Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection. Front Microbiol 2021; 12:754664. [PMID: 34745059 PMCID: PMC8570118 DOI: 10.3389/fmicb.2021.754664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded RNA virus of positive polarity [ssRNA(+)] that replicates its genome through the activity of one of its proteins, called NS5B. This viral protein is responsible for copying the positive-polarity RNA genome into a negative-polarity RNA strand, which will be the template for new positive-polarity RNA genomes. The NS5B protein is phosphorylated by cellular kinases, including Akt. In this work, we have identified several amino acids of NS5B that are phosphorylated by Akt, with positions S27, T53, T267, and S282 giving the most robust results. Site-directed mutagenesis of these residues to mimic (Glu mutants) or prevent (Ala mutants) their phosphorylation resulted in a reduced NS5B in vitro RNA polymerase activity, except for the T267E mutant, the only non-conserved position of all those that are phosphorylated. In addition, in vitro transcribed RNAs derived from HCV complete infectious clones carrying mutations T53E/A and S282E/A were transfected in Huh-7.5 permissive cells, and supernatant viral titers were measured at 6 and 15 days post-transfection. No virus was rescued from the mutants except for T53A at 15 days post-transfection whose viral titer was statistically lower as compared to the wild type. Therefore, phosphorylation of NS5B by cellular kinases is a mechanism of viral polymerase inactivation. Whether this inactivation is a consequence of interaction with cellular kinases or a way to generate inactive NS5B that may have other functions are questions that need further experimental work.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain
| | - Laura Albentosa-González
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Blanca Palmero
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Eugenio Ramírez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
3
|
Albentosa-González L, Jimenez de Oya N, Arias A, Clemente-Casares P, Martin-Acebes MÁ, Saiz JC, Sabariegos R, Mas A. Akt Kinase Intervenes in Flavivirus Replication by Interacting with Viral Protein NS5. Viruses 2021; 13:v13050896. [PMID: 34066055 PMCID: PMC8151281 DOI: 10.3390/v13050896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/30/2022] Open
Abstract
Arthropod-borne flaviviruses, such as Zika virus (ZIKV), Usutu virus (USUV), and West Nile virus (WNV), are a growing cause of human illness and death around the world. Presently, no licensed antivirals to control them are available and, therefore, search for broad-spectrum antivirals, including host-directed compounds, is essential. The PI3K/Akt pathway controls essential cellular functions involved in cell metabolism and proliferation. Moreover, Akt has been found to participate in modulating replication in different viruses including the flaviviruses. In this work we studied the interaction of flavivirus NS5 polymerases with the cellular kinase Akt. In vitro NS5 phosphorylation experiments with Akt showed that flavivirus NS5 polymerases are phosphorylated and co-immunoprecipitate by Akt. Polymerase activity assays of Ala- and Glu-generated mutants for the Akt-phosphorylated residues also indicate that Glu mutants of ZIKV and USUV NS5s present a reduced primer-extension activity that was not observed in WNV mutants. Furthermore, treatment with Akt inhibitors (MK-2206, honokiol and ipatasertib) reduced USUV and ZIKV titers in cell culture but, except for honokiol, not WNV. All these findings suggest an important role for Akt in flavivirus replication although with specific differences among viruses and encourage further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral potential target.
Collapse
Affiliation(s)
- Laura Albentosa-González
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
| | - Nereida Jimenez de Oya
- ZOOVIR, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (N.J.d.O.); (M.Á.M.-A.); (J.C.S.)
| | - Armando Arias
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
| | - Pilar Clemente-Casares
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Miguel Ángel Martin-Acebes
- ZOOVIR, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (N.J.d.O.); (M.Á.M.-A.); (J.C.S.)
| | - Juan Carlos Saiz
- ZOOVIR, Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28040 Madrid, Spain; (N.J.d.O.); (M.Á.M.-A.); (J.C.S.)
| | - Rosario Sabariegos
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence: (R.S.); (A.M.)
| | - Antonio Mas
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (L.A.-G.); (A.A.); (P.C.-C.)
- Unidad de Biomedicina UCLM-CSIC, 02008 Albacete, Spain
- Facultad de Farmacia, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence: (R.S.); (A.M.)
| |
Collapse
|
4
|
Li HC, Yang CH, Lo SY. Hepatitis C Viral Replication Complex. Viruses 2021; 13:v13030520. [PMID: 33809897 PMCID: PMC8004249 DOI: 10.3390/v13030520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
The life cycle of the hepatitis C virus (HCV) can be divided into several stages, including viral entry, protein translation, RNA replication, viral assembly, and release. HCV genomic RNA replication occurs in the replication organelles (RO) and is tightly linked to ER membrane alterations containing replication complexes (proteins NS3 to NS5B). The amplification of HCV genomic RNA could be regulated by the RO biogenesis, the viral RNA structure (i.e., cis-acting replication elements), and both viral and cellular proteins. Studies on HCV replication have led to the development of direct-acting antivirals (DAAs) targeting the replication complex. This review article summarizes the viral and cellular factors involved in regulating HCV genomic RNA replication and the DAAs that inhibit HCV replication.
Collapse
Affiliation(s)
- Hui-Chun Li
- Department of Biochemistry, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
| | - Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2322)
| |
Collapse
|
5
|
Polymerase Activity, Protein-Protein Interaction, and Cellular Localization of the Usutu Virus NS5 Protein. Antimicrob Agents Chemother 2019; 64:AAC.01573-19. [PMID: 31685463 PMCID: PMC7187600 DOI: 10.1128/aac.01573-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Usutu virus (USUV) has become increasingly relevant in recent years, with large outbreaks that sporadically have affected humans being reported in wildlife. Similarly to the rest of flaviviruses, USUV contains a positive-sense single-stranded RNA genome which is replicated by the activity of nonstructural protein 5 (NS5). USUV NS5 shows high sequence identity with the remaining viruses in this genus. This permitted us to identify the predicted methyltransferase domain and the RNA-dependent RNA polymerase domain (RdRpD). Owing to their high degree of conservation, viral polymerases are considered priority targets for the development of antiviral compounds. In the present study, we cloned and expressed the entire NS5 and the RdRpD in a heterologous system and used purified preparations for protein characterizations. We determined the optimal reaction conditions by investigating how variations in different physicochemical parameters, such as buffer concentration, temperature, and pH, affect RNA polymerization activity. We also found that USUV polymerase, but not the full-length NS5, exhibits cooperative activity in the synthesis of RNA and that the RdRp activity is not inhibited by sofosbuvir. To further examine the characteristics of USUV polymerase in a more specifically biological context, we have expressed NS5 and the RdRpD in eukaryotic cells and analyzed their subcellular location. NS5 is predominantly found in the cytoplasm; a significant proportion is directed to the nucleus, and this translocation involves nuclear location signals (NLS) located at least between the MTase and RdRpD domains.
Collapse
|
6
|
Pi F, Zhao Z, Chelikani V, Yoder K, Kvaratskhelia M, Guo P. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. J Virol 2016; 90:8036-46. [PMID: 27356896 PMCID: PMC5008075 DOI: 10.1128/jvi.00508-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.
Collapse
Affiliation(s)
- Fengmei Pi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zhengyi Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Venkata Chelikani
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Kristine Yoder
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mamuka Kvaratskhelia
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Hepatitis C Virus RNA-Dependent RNA Polymerase Interacts with the Akt/PKB Kinase and Induces Its Subcellular Relocalization. Antimicrob Agents Chemother 2016; 60:3540-50. [PMID: 27021315 DOI: 10.1128/aac.03019-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) interacts with cellular components and modulates their activities for its own benefit. These interactions have been postulated as a target for antiviral treatment, and some candidate molecules are currently in clinical trials. The multifunctional cellular kinase Akt/protein kinase B (PKB) must be activated to increase the efficacy of HCV entry but is rapidly inactivated as the viral replication cycle progresses. Viral components have been postulated to be responsible for Akt/PKB inactivation, but the underlying mechanism remained elusive. In this study, we show that HCV polymerase NS5B interacts with Akt/PKB. In the presence of transiently expressed NS5B or in replicon- or virus-infected cells, NS5B changes the cellular localization of Akt/PKB from the cytoplasm to the perinuclear region. Sequestration of Akt/PKB by NS5B could explain its exclusion from its participation in early Akt/PKB inactivation. The NS5B-Akt/PKB interaction represents a new regulatory step in the HCV infection cycle, opening possibilities for new therapeutic options.
Collapse
|