1
|
Panthi S, Hong JY, Satange R, Yu CC, Li LY, Hou MH. Antiviral drug development by targeting RNA binding site, oligomerization and nuclear export of influenza nucleoprotein. Int J Biol Macromol 2024; 282:136996. [PMID: 39486729 DOI: 10.1016/j.ijbiomac.2024.136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
The quasispecies of the influenza virus poses a significant challenge for developing effective therapies. Current antiviral drugs such as oseltamivir, zanamivir, peramivir and baloxavir marboxil along with seasonal vaccines have limitations due to viral variability caused by antigenic drift and shift as well as the development of drug resistance. Therefore, there is a clear need for novel antiviral agents targeting alternative mechanisms, either independently or in combination with existing modalities, to reduce the impact of influenza virus-related infections. The influenza nucleoprotein (NP) is a key component of the viral ribonucleoprotein complex. The multifaceted nature of the NP makes it an attractive target for antiviral intervention. Recent reports have identified inhibitors that specifically target this protein. Recognizing the importance of developing influenza treatments for potential pandemics, this review explores the structural and functional aspects of NP and highlights its potential as an emerging target for anti-influenza drugs. We discuss various strategies for targeting NP, including RNA binding, oligomerization, and nuclear export, and also consider the potential of NP-based vaccines. Overall, this review provides insights into recent developments and future perspectives on targeting influenza NP for antiviral therapies.
Collapse
Affiliation(s)
- Sankar Panthi
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Jhen-Yi Hong
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Long-Yuan Li
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ming-Hon Hou
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan; Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan; Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Wang X, Yang C, Yue D, Xu M, Duan S, Shen X. Iodine-Catalyzed Cascade Annulation of 4-Hydroxycoumarins with Aurones: Access to Spirocyclic Benzofuran-Furocoumarins. Molecules 2024; 29:1701. [PMID: 38675521 PMCID: PMC11052457 DOI: 10.3390/molecules29081701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
An attractive approach for the preparation of spirocyclic benzofuran-furocoumarins has been developed through iodine-catalyzed cascade annulation of 4-hydroxycoumarins with aurones. The reaction involves Michael addition, iodination, and intramolecular nucleophilic substitution in a one-step process, and offers an efficient method for easy access to a series of valuable spirocyclic benzofuran-furocoumarins in good yields (up to 99%) with excellent stereoselectivity. Moreover, this unprecedented protocol provides several advantages, including readily available materials, an environmentally benign catalyst, a broad substrate scope, and a simple procedure.
Collapse
Affiliation(s)
- Xuequan Wang
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Changhui Yang
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Dan Yue
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Mingde Xu
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Suyue Duan
- School of Chemistry and Resources Engineering, Honghe University, Honghe 661100, China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
3
|
Dong M, Wang Y, Li P, Chen Z, Anirudhan V, Cui Q, Rong L, Du R. Allopregnanolone targets nucleoprotein as a novel influenza virus inhibitor. Virol Sin 2023; 38:931-939. [PMID: 37741571 PMCID: PMC10786660 DOI: 10.1016/j.virs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Influenza A virus (IAV) poses a global public health concern and remains an imminent threat to human health. Emerging antiviral resistance to the currently approved influenza drugs emphasizes the urgent need for new therapeutic entities against IAV. Allopregnanolone (ALLO) is a natural product that has been approved as an antidepressant drug. In the present study, we repurposed ALLO as a novel inhibitor against IAVs. Mechanistic studies demonstrated that ALLO inhibited virus replication by interfering with the nucleus translocation of viral nucleoprotein (NP). In addition, ALLO showed significant synergistic activity with compound 16, a hemagglutinin inhibitor of IAVs. In summary, we have identified ALLO as a novel influenza virus inhibitor targeting NP, providing a promising candidate that deserves further investigation as a useful anti-influenza strategy in the future.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
4
|
Son S, Ahn SB, Kim G, Jang Y, Ko C, Kim M, Kim SJ. Identification of broad-spectrum neutralizing antibodies against influenza A virus and evaluation of their prophylactic efficacy in mice. Antiviral Res 2023; 213:105591. [PMID: 37003306 DOI: 10.1016/j.antiviral.2023.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Influenza A virus continuously infects humans, and the antigenic shifts of this respiratory virus enable it to cross the species barrier, threatening public health with the risk of pandemics. Broadly neutralizing antibodies (bnAbs) that target the antigenic surface glycoprotein, hemagglutinin (HA), of influenza A virus protect against various subtypes of the virus. Here, we screened a human scFv library, through phage display and panning against recombinant HA proteins, to discover human monoclonal antibodies (mAbs) that are broadly active. Consequently, two human mAbs, named G1 and G2, were identified, which target the HA proteins of the H1N1 and H3N2 subtypes, respectively. G1, was shown to have broad binding ability to different HA subtypes of group 1. By contrast, G2 had higher binding affinity but sensed exclusively H3 subtype-derived HAs. In a cell culture-based virus-neutralizing assay, both G1 and G2 efficiently suppressed infection of the parental influenza A viruses of H1N1 and H3N2 subtypes. Mode-of-action studies showed that the G1 antibody blocked HA2-mediated membrane fusion. Meanwhile, G2 inhibited HA1-mediated viral attachment to host cells. It is noteworthy that both antibodies elicited antibody-dependent cellular cytotoxicity (ADCC) activities by recruiting FcγRIIIA-expressing effector cells. In mouse challenge models, single-shot, intraperitoneal administration of chimeric G1 and G2 antibodies with the mouse IgG constant region completely protected mice from viral infections at doses above 10 and 1 mg/kg, respectively. The newly identified bnAbs, G1 and G2, could provide insight into the development of broad-spectrum antivirals against future pandemic influenza A virus involving group 1- or H3-subtyped strains.
Collapse
Affiliation(s)
- Sumin Son
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Soo Bin Ahn
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Geonyeong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Chunkyu Ko
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
5
|
Zhang Y, Xu WF, Yu Y, Zhang Q, Huang L, Hao C, Shao CL, Wang W. Inhibition of influenza A virus replication by a marine derived quinolone alkaloid targeting virus nucleoprotein. J Med Virol 2023; 95:e28499. [PMID: 36653877 DOI: 10.1002/jmv.28499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Owing to the emergence of drug resistance and high morbidity and mortality, the need for novel anti-influenza A virus (IAV) drugs with divergent targets is highly sought after. Herein, a novel quinolone alkaloid (QLA) derived from marine fungus was discovered with broad-spectrum anti-IAV activities with low toxicity. Distinct from current anti-IAV drugs, QLA may block virus replication and viral RNA (vRNA) export from the nucleus by targeting virus nucleoprotein (NP). QLA can block the binding of chromosome region maintenance 1 to nuclear export signal 3 of NP to inhibit the nuclear export of NP and vRNP. QLA may also affect vRNP assembly by interfering with the binding of NP to RNA rather than NP oligomerization. Arg305 and Phe488-Gly490 may be required for the interaction between QLA and NP, and the binding pocket around these amino acids may be a promising target for anti-IAV drugs. Importantly, oral administration of QLA can protect the mice against IAV-induced death and weight loss, superior to the effects of the clinical drug oseltamivir. In summary, the marine derived compound QLA has the potential to be developed into a novel anti-IAV agent targeting virus NP protein in the future.
Collapse
Affiliation(s)
- Yang Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Wei-Feng Xu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yunjia Yu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Qun Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lianghao Huang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chang-Lun Shao
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Wang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Hou L, Zhang Y, Ju H, Cherukupalli S, Jia R, Zhang J, Huang B, Loregian A, Liu X, Zhan P. Contemporary medicinal chemistry strategies for the discovery and optimization of influenza inhibitors targeting vRNP constituent proteins. Acta Pharm Sin B 2022; 12:1805-1824. [PMID: 35847499 PMCID: PMC9279641 DOI: 10.1016/j.apsb.2021.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Influenza is an acute respiratory infectious disease caused by the influenza virus, affecting people globally and causing significant social and economic losses. Due to the inevitable limitations of vaccines and approved drugs, there is an urgent need to discover new anti-influenza drugs with different mechanisms. The viral ribonucleoprotein complex (vRNP) plays an essential role in the life cycle of influenza viruses, representing an attractive target for drug design. In recent years, the functional area of constituent proteins in vRNP are widely used as targets for drug discovery, especially the PA endonuclease active site, the RNA-binding site of PB1, the cap-binding site of PB2 and the nuclear export signal of NP protein. Encouragingly, the PA inhibitor baloxavir has been marketed in Japan and the United States, and several drug candidates have also entered clinical trials, such as favipiravir. This article reviews the compositions and functions of the influenza virus vRNP and the research progress on vRNP inhibitors, and discusses the representative drug discovery and optimization strategies pursued.
Collapse
|
7
|
Antiviral activity of lambda-carrageenan against influenza viruses and severe acute respiratory syndrome coronavirus 2. Sci Rep 2021; 11:821. [PMID: 33436985 PMCID: PMC7804421 DOI: 10.1038/s41598-020-80896-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/30/2020] [Indexed: 01/04/2023] Open
Abstract
Influenza virus and coronavirus, belonging to enveloped RNA viruses, are major causes of human respiratory diseases. The aim of this study was to investigate the broad spectrum antiviral activity of a naturally existing sulfated polysaccharide, lambda-carrageenan (λ-CGN), purified from marine red algae. Cell culture-based assays revealed that the macromolecule efficiently inhibited both influenza A and B viruses with EC50 values ranging from 0.3 to 1.4 μg/ml, as well as currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an EC50 value of 0.9 ± 1.1 μg/ml. No toxicity to the host cells was observed at concentrations up to 300 μg/ml. Plaque titration and western blot analysis verified that λ-CGN reduced expression of viral proteins in cell lysates and suppressed progeny virus production in culture supernatants in a dose-dependent manner. This polyanionic compound exerts antiviral activity by targeting viral attachment to cell surface receptors and preventing virus entry. Moreover, its intranasal administration to mice during influenza A viral challenge not only alleviated infection-mediated reductions in body weight but also protected 60% of mice from virus-induced mortality. Thus, λ-CGN could be a promising antiviral agent for preventing infection with several respiratory viruses.
Collapse
|
8
|
Jang Y, Shin JS, Lee JY, Shin H, Kim SJ, Kim M. In Vitro and In Vivo Antiviral Activity of Nylidrin by Targeting the Hemagglutinin 2-Mediated Membrane Fusion of Influenza A Virus. Viruses 2020; 12:v12050581. [PMID: 32466302 PMCID: PMC7290441 DOI: 10.3390/v12050581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus, one of the major human respiratory pathogens, is responsible for annual seasonal endemics and unpredictable periodic pandemics. Despite the clinical availability of vaccines and antivirals, the antigenic diversity and drug resistance of this virus makes it a persistent threat to public health, underlying the need for the development of novel antivirals. In a cell culture-based high-throughput screen, a β2-adrenergic receptor agonist, nylidrin, was identified as an antiviral compound against influenza A virus. The molecule was effective against multiple isolates of subtype H1N1, but had limited activity against subtype H3N2, depending on the strain. By examining the antiviral activity of its chemical analogues, we found that ifenprodil and clenbuterol also had reliable inhibitory effects against A/H1N1 strains. Field-based pharmacophore modeling with comparisons of active and inactive compounds revealed the importance of positive and negative electrostatic patterns of phenyl aminoethanol derivatives. Time-of-addition experiments and visualization of the intracellular localization of nucleoprotein NP demonstrated that an early step of the virus life cycle was suppressed by nylidrin. Ultimately, we discovered that nylidrin targets hemagglutinin 2 (HA2)-mediated membrane fusion by blocking conformational change of HA at acidic pH. In a mouse model, preincubation of a mouse-adapted influenza A virus (H1N1) with nylidrin completely blocked intranasal viral infection. The present study suggests that nylidrin could provide a core chemical skeleton for the development of a direct-acting inhibitor of influenza A virus entry.
Collapse
Affiliation(s)
- Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (J.-Y.L.)
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (J.-Y.L.)
| | - Joo-Youn Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (J.-Y.L.)
| | - Heegwon Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea;
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea; (Y.J.); (J.S.S.); (J.-Y.L.)
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-860-7540
| |
Collapse
|
9
|
Basu P, Satam N, Namboothiri INN. Synthesis of indenofurans, benzofurans and spiro-lactones via Hauser–Kraus annulation involving 1,6-addition of phthalide to quinone methides. Org Biomol Chem 2020; 18:5677-5687. [DOI: 10.1039/d0ob01115k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Base mediated 1,6-addition–Dieckmann cyclization of phthalide with quinone methide leads to oxygen heterocycles such as indenofurans, spiro-lactones and benzofurans through a cascade of rearrangements involving multiple ring opening and ring closure.
Collapse
Affiliation(s)
- Pallabita Basu
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Nishikant Satam
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | | |
Collapse
|
10
|
Abstract
Introduction: Benzofuran is a fundamental unit in numerous bioactive heterocycles. They have attracted chemists and medical researchers due to their broad range of biological activity, where some of them possess unique anticancer, antitubercular, antidiabetic, anti-Alzheimer and anti-inflammatory properties. The benzofuran nucleus is present in a huge number of bioactive natural and synthetic compounds. Benzofuran derivatives have potent applications in pharmaceuticals, agriculture, and polymers. The recent developments considering the biological activities of benzofuran compounds are reported. They have a vital role as pronounced inhibitors against a number of diseases, viruses, fungus, microbes, and enzymes. Areas covered: This review covers the recent developments of biological activities of benzofurans during the period 2014-2019. The covered areas here comprised antimicrobial, anti-inflammatory, antitumor, antitubercular, antidiabetic, anti-Alzheimer, antioxidant, antiviral, vasorelaxant, anti-osteoporotic and enzyme inhibitory activities. Expert opinion: In addition to the already commercialized 34 benzofurans-based drugs in the market, this chapter outlines several potent benzofuran derivatives that may be useful as potential pro-drugs. It is also focused on providing details of SAR and the effect of certain functional groups on the activity of the benzofuran compounds. The presence of -OH, -OMe, sulfonamide, or halogen contributed greatly to increasing the therapeutic activities comparing with reference drugs.
Collapse
Affiliation(s)
- Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University , Giza , Egypt
| |
Collapse
|
11
|
Zheng W, Fan W, Zhang S, Jiao P, Shang Y, Cui L, Mahesutihan M, Li J, Wang D, Gao GF, Sun L, Liu W. Naproxen Exhibits Broad Anti-influenza Virus Activity in Mice by Impeding Viral Nucleoprotein Nuclear Export. Cell Rep 2019; 27:1875-1885.e5. [PMID: 31067470 DOI: 10.1016/j.celrep.2019.04.053] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/01/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022] Open
Abstract
Naproxen is a non-steroidal anti-inflammatory drug that has previously been shown to exert antiviral activity against influenza A virus by inhibiting nucleoprotein (NP) binding to RNA. Here, we show that naproxen is a potential broad, multi-mechanistic anti-influenza virus therapeutic, as it inhibits influenza B virus replication both in vivo and in vitro. The anti-influenza B virus activity of naproxen is more efficient than that of the commonly used neuraminidase inhibitor oseltamivir in mice. Furthermore, the NP of influenza B virus (BNP) has a higher binding affinity to naproxen than influenza A virus NP (ANP). Specifically, naproxen targets the NP at residues F209 (BNP) and Y148 (ANP). This interaction antagonizes the nuclear export of NP normally mediated by the host export protein CRM1. This study reveals a crucial mechanism of broad-spectrum anti-influenza virus activity of naproxen, suggesting that the existing drug naproxen may be used as an anti-influenza drug.
Collapse
Affiliation(s)
- Weinan Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengtao Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China
| | - Yingli Shang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Liang Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Madina Mahesutihan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dayan Wang
- Chinese National Influenza Center (CNIC), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Chinese National Influenza Center (CNIC), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Salinomycin Inhibits Influenza Virus Infection by Disrupting Endosomal Acidification and Viral Matrix Protein 2 Function. J Virol 2018; 92:JVI.01441-18. [PMID: 30282713 DOI: 10.1128/jvi.01441-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
Screening of chemical libraries with 2,000 synthetic compounds identified salinomycin as a hit against influenza A and B viruses, with 50% effective concentrations ranging from 0.4 to 4.3 μM in cells. This compound is a carboxylic polyether ionophore that exchanges monovalent ions for protons across lipid bilayer membranes. Monitoring the time course of viral infection showed that salinomycin blocked nuclear migration of viral nuclear protein (NP), the most abundant component of the viral ribonucleoprotein (vRNP) complex. It caused cytoplasmic accumulation of NP, particularly within perinuclear endosomes, during virus entry. This was primarily associated with failure to acidify the endosomal-lysosomal compartments. Similar to the case with amantadine (AMT), proton channel activity of viral matrix protein 2 (M2) was blocked by salinomycin. Using purified retroviral Gag-based virus-like particles (VLPs) with M2, it was proved that salinomycin directly affects the kinetics of a proton influx into the particles but in a manner different from that of AMT. Notably, oral administration of salinomycin together with the neuraminidase inhibitor oseltamivir phosphate (OSV-P) led to enhanced antiviral effect over that with either compound used alone in influenza A virus-infected mouse models. These results provide a new paradigm for developing antivirals and their combination therapy that control both host and viral factors.IMPORTANCE Influenza virus is a main cause of viral respiratory infection in humans as well as animals, occasionally with high mortality. Circulation of influenza viruses resistant to the matrix protein 2 (M2) inhibitor, amantadine, is highly prevalent. Moreover, the frequency of detection of viruses resistant to the neuraminidase inhibitors, including oseltamivir phosphate (OSV-P) or zanamivir, is also increasing. These issues highlight the need for discovery of new antiviral agents with different mechanisms. Salinomycin as the monovalent cation-proton antiporter exhibited consistent inhibitory effects against influenza A and B viruses. It plays multifunctional roles by blocking endosomal acidification and by inactivating the proton transport function of M2, the key steps for influenza virus uncoating. Notably, salinomycin resulted in marked therapeutic effects in influenza virus-infected mice when combined with OSV-P, suggesting that its chemical derivatives could be developed as an adjuvant antiviral therapy to treat influenza infections resistant or less sensitive to existing drugs.
Collapse
|
13
|
Lee K, Kim DE, Jang KS, Kim SJ, Cho S, Kim C. Gemcitabine, a broad-spectrum antiviral drug, suppresses enterovirus infections through innate immunity induced by the inhibition of pyrimidine biosynthesis and nucleotide depletion. Oncotarget 2017; 8:115315-115325. [PMID: 29383162 PMCID: PMC5777774 DOI: 10.18632/oncotarget.23258] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/05/2017] [Indexed: 11/25/2022] Open
Abstract
Gemcitabine, an anti-cancer chemotherapy drug, has additionally shown the antiviral activity against a broad range of viruses and we also have previously reported its synergistic antiviral activity with ribavirin against enteroviruses. As a cytidine analog, gemcitabine has been reported to have an inhibitory activity on the pyrimidine biosynthesis. In addition, a few inhibitors of the pyrimidine biosynthesis have shown to induce the innate immunity in a yet-to-be-determined manner and inhibit the virus infection. Thus, we also investigated whether the anti-enteroviral activity of gemcitabine is mediated by innate immunity, induction of which is related with the inhibition of the pyrimidine synthesis. In this study, we found that the addition of exogenous cytidine, uridine and uridine mono-phosphate (UMP) effectively reversed the antiviral activity of gemcitabine in enterovirus-infected as well as enteroviral replicon-harboring cells, demonstrating gemcitabine's targeting of the salvage pathway. Moreover, the expression of several interferon (IFN)-stimulated genes (ISGs) was significantly induced by the treatment of gemcitabine, which was also suppressed by the co-treatment with cytidine. These results suggest that the antiviral activity of gemcitabine involves ISGs induced by the inhibition of the pyrimidine biosynthesis.
Collapse
Affiliation(s)
- Kyungjin Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Dong-Eun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Chonsaeng Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Department of Medicinal and Pharmaceutical Chemistry, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
14
|
Shin JS, Ku KB, Jang Y, Yoon YS, Shin D, Kwon OS, Go YY, Kim SS, Bae MA, Kim M. Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. J Microbiol 2017; 55:979-983. [PMID: 29214495 DOI: 10.1007/s12275-017-7371-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
Abstract
Influenza viruses are major human respiratory pathogens that cause high morbidity and mortality worldwide. Currently, prophylactic vaccines and therapeutic antiviral agents are used to prevent and control influenza virus infection. Oseltamivir free base (OSV-FB), a modified generic antiviral drug of Tamiflu (oseltamivir phosphate, OSV-P), was launched in the Republic of Korea last year. Here, we examine the bioequivalence of these two compounds by assessing their antiviral efficacy in infected cells and in a mouse model. It was observed that both antivirals showed comparable efficacy against 11 different influenza A and B viruses in vitro. Moreover, in mice infected with influenza A virus (mouse-adapted A/Puerto Rico/8/34), they showed a dose-dependent therapeutic activity and alleviated infection-mediated reductions in body weight, leading to significantly better survival. There was histopathological disappearance of virus-induced inflammatory cell infiltration of the lung after oral treatment with either antiviral agent (at 10 mg/kg). Pharmacokinetic analysis also exhibited similar plasma concentrations of the active drug, oseltamivir carboxylate, metabolised from both OSV-B and OSV-P. This is the first report showing bioequivalence of OSV-FB to its phosphate salt form in the mouse system. The free base drug has some beneficial points including simple drug formulation process and reduced risk of undesirable cation-phosphate precipitation within solution. The long term stability of OSV-FB requires further monitoring when it is provided as a national stock in readiness for an influenza pandemic.
Collapse
Affiliation(s)
- Jin Soo Shin
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Keun Bon Ku
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yejin Jang
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yi-Seul Yoon
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Daeho Shin
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Oh Seung Kwon
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Yun Young Go
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Seong Soon Kim
- Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.,Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34113, Republic of Korea
| | - Myoung Ae Bae
- Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.,Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon, 34113, Republic of Korea
| | - Meehyein Kim
- Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea. .,Department of Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Li R, Liu T, Liu M, Chen F, Liu S, Yang J. Anti-influenza A Virus Activity of Dendrobine and Its Mechanism of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3665-3674. [PMID: 28417634 DOI: 10.1021/acs.jafc.7b00276] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dendrobine, a major component of Dendrobium nobile, increasingly draws attention for its wide applications in health care. Here we explore potential effects of dendrobine against influenza A virus and elucidate the underlying mechanism. Our results indicated that dendrobine possessed antiviral activity against influenza A viruses, including A/FM-1/1/47 (H1N1), A/Puerto Rico/8/34 H274Y (H1N1), and A/Aichi/2/68 (H3N2) with IC50 values of 3.39 ± 0.32, 2.16 ± 0.91, 5.32 ± 1.68 μg/mL, respectively. Mechanism studies revealed that dendrobine inhibited early steps in the viral replication cycle. Notably, dendrobine could bind to the highly conserved region of viral nucleoprotein (NP), subsequently restraining nuclear export of viral NP and its oligomerization. In conclusion, dendrobine shows potential to be developed as a promising agent to treat influenza virus infection. More importantly, the results provide invaluable information for the full application of the Traditional Chinese Medicine named "Shi Hu".
Collapse
Affiliation(s)
- Richan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Teng Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Miaomiao Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Feimin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou 510515, China
| |
Collapse
|