1
|
Zhou J, Hua Y, Liu Y, Wu T, Xu H, Wang Z, Wang X, Niu J. A mutual regulatory loop between transcription factor Yin Yang 1 and hepatitis B virus replication influences chronic hepatitis B. Antiviral Res 2024; 226:105889. [PMID: 38631661 DOI: 10.1016/j.antiviral.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) infections pose a major threat to human health. HBV can upregulate the expression of the transcription factor Yin Yang 1 (YY1) in in vitro cytological experiments, suggesting an association between YY1 and HBV infection. However, data on YY1 expression in chronic hepatitis B (CHB) patients are lacking. In this study, we aimed to assess the correlation between YY1 expression and HBV infection. We detected serum YY1 levels in 420 patients with chronic HBV infection, 30 patients with chronic hepatitis C virus infection, and 32 healthy controls using an enzyme-linked immunosorbent assay. The correlation between YY1 levels and clinical parameters was analyzed. Meanwhile, the changes of YY1 before and after interferon or entecavir treatment were analyzed. YY1 levels in the liver tissues were detected using immunofluorescence staining. The expression of YY1 in HBV-expressing cells was detected through western blotting. Meanwhile, we explored the effects of YY1 on HBV replication and gene expression. We found that YY1 was highly expressed in the serum and liver tissues of CHB patients. Serum YY1 levels positively correlated with HBV DNA and hepatitis B surface antigen (HBsAg). Additionally, HBV DNA levels increased but HBsAg levels decreased after HBV-expressing cells overexpress YY1. In conclusion, our study demonstrates that YY1 plays an important role in HBV replication and gene expression, providing a potential target for the treatment of CHB.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Hepatology, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yunhao Hua
- Infection Control Department, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Yuwei Liu
- Department of Hepatology, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Tong Wu
- Department of Hepatology, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Hongqin Xu
- Department of Hepatology, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhongfeng Wang
- Department of Hepatology, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaomei Wang
- Department of Hepatology, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Junqi Niu
- Department of Hepatology, Centre of Infectious Diseases and Pathogen Biology, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
3
|
Advance of SOX Transcription Factors in Hepatocellular Carcinoma: From Role, Tumor Immune Relevance to Targeted Therapy. Cancers (Basel) 2022; 14:cancers14051165. [PMID: 35267473 PMCID: PMC8909699 DOI: 10.3390/cancers14051165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the deadliest human health burdens worldwide. However, the molecular mechanism of HCC development is still not fully understood. Sex determining region Y-related high-mobility group box (SOX) transcription factors not only play pivotal roles in cell fate decisions during development but also participate in the initiation and progression of cancer. Given the significance of SOX factors in cancer and their ‘undruggable’ properties, we summarize the role and molecular mechanism of SOX family members in HCC and the regulatory effect of SOX factors in the tumor immune microenvironment (TIME) of various cancers. For the first time, we analyze the association between the levels of SOX factors and that of immune components in HCC, providing clues to the pivotal role of SOX factors in the TIME of HCC. We also discuss the opportunities and challenges of targeting SOX factors for cancer. Abstract Sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) factors belong to an evolutionarily conserved family of transcription factors that play essential roles in cell fate decisions involving numerous developmental processes. In recent years, the significance of SOX factors in the initiation and progression of cancers has been gradually revealed, and they act as potential therapeutic targets for cancer. However, the research involving SOX factors is still preliminary, given that their effects in some leading-edge fields such as tumor immune microenvironment (TIME) remain obscure. More importantly, as a class of ‘undruggable’ molecules, targeting SOX factors still face considerable challenges in achieving clinical translation. Here, we mainly focus on the roles and regulatory mechanisms of SOX family members in hepatocellular carcinoma (HCC), one of the fatal human health burdens worldwide. We then detail the role of SOX members in remodeling TIME and analyze the association between SOX members and immune components in HCC for the first time. In addition, we emphasize several alternative strategies involved in the translational advances of SOX members in cancer. Finally, we discuss the alternative strategies of targeting SOX family for cancer and propose the opportunities and challenges they face based on the current accumulated studies and our understanding.
Collapse
|
4
|
Wang C, Li X, Ning W, Gong S, Yang F, Fang C, Gong Y, Wu D, Huang M, Gou Y, Fu S, Ren Y, Yang R, Qiu Y, Xue Y, Xu Y, Zhou X. Multi-omic profiling of plasma reveals molecular alterations in children with COVID-19. Theranostics 2021; 11:8008-8026. [PMID: 34335977 PMCID: PMC8315065 DOI: 10.7150/thno.61832] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Rationale: Children usually develop less severe symptoms responding to Coronavirus Disease 2019 (COVID-19) than adults. However, little is known about the molecular alterations and pathogenesis of COVID-19 in children. Methods: We conducted plasma proteomic and metabolomic profilings of the blood samples of a cohort containing 18 COVID-19-children with mild symptoms and 12 healthy children, which were enrolled from hospital admissions and outpatients, respectively. Statistical analyses were performed to identify molecules specifically altered in COVID-19-children. We also developed a machine learning-based pipeline named inference of biomolecular combinations with minimal bias (iBM) to prioritize proteins and metabolites strongly altered in COVID-19-children, and experimentally validated the predictions. Results: By comparing to the multi-omic data in adults, we identified 44 proteins and 249 metabolites differentially altered in COVID-19-children against healthy children or COVID-19-adults. Further analyses demonstrated that both deteriorative immune response/inflammation processes and protective antioxidant or anti-inflammatory processes were markedly induced in COVID-19-children. Using iBM, we prioritized two combinations that contained 5 proteins and 5 metabolites, respectively, each exhibiting a total area under curve (AUC) value of 100% to accurately distinguish COVID-19-children from healthy children or COVID-19-adults. Further experiments validated that all the 5 proteins were up-regulated upon coronavirus infection. Interestingly, we found that the prioritized metabolites inhibited the expression of pro-inflammatory factors, and two of them, methylmalonic acid (MMA) and mannitol, also suppressed coronaviral replication, implying a protective role of these metabolites in COVID-19-children. Conclusion: The finding of a strong antagonism of deteriorative and protective effects provided new insights on the mechanism and pathogenesis of COVID-19 in children that mostly underwent mild symptoms. The identified metabolites strongly altered in COVID-19-children could serve as potential therapeutic agents of COVID-19.
Collapse
Affiliation(s)
- Chong Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Xufang Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Wanshan Ning
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sitang Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Fengxia Yang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Chunxiao Fang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Yu Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Muhan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yujie Gou
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shanshan Fu
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Ren
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Ruyi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- Department of Infectious Diseases, Guangzhou Women and Childrens Medical Center, Guangzhou, 510120, China
| | - Xi Zhou
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China
| |
Collapse
|
5
|
Xie M, Guo H, Lou G, Yao J, Liu Y, Sun Y, Yang Z, Zheng M. Neddylation inhibitor MLN4924 has anti-HBV activity via modulating the ERK-HNF1α-C/EBPα-HNF4α axis. J Cell Mol Med 2020; 25:840-854. [PMID: 33263949 PMCID: PMC7812279 DOI: 10.1111/jcmm.16137] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem. The high levels of HBV DNA and HBsAg are positively associated with the development of secondary liver diseases, including hepatocellular carcinoma (HCC). Current treatment with nucleos(t)ide analogues mainly reduces viral DNA, but has minimal, if any, inhibitory effect on the viral antigen. Although IFN reduces both HBV DNA and HBsAg, the serious associated side effects limit its use in clinic. Thus, there is an urgent demanding for novel anti‐HBV therapy. In our study, viral parameters were determined in the supernatant of HepG2.2.15 cells, HBV‐expressing Huh7 and HepG2 cells which transfected with HBV plasmids and in the serum of HBV mouse models with hydrodynamic injection of pAAV‐HBV1.2 plasmid. RT‐qPCR and Southern blot were performed to detect 35kb mRNA and cccDNA. RT‐qPCR, Luciferase assay and Western blot were used to determine anti‐HBV effects of MLN4924 and the underlying mechanisms. We found that treatment with MLN4924, the first‐in‐class neddylation inhibitor currently in several phase II clinical trials for anti‐cancer application, effectively suppressed production of HBV DNA, HBsAg, 3.5kb HBV RNA as well as cccDNA. Mechanistically, MLN4924 blocks cullin neddylation and activates ERK to suppress the expression of several transcription factors required for HBV replication, including HNF1α, C/EBPα and HNF4α, leading to an effective blockage in the production of cccDNA and HBV antigen. Our study revealed that neddylation inhibitor MLN4924 has impressive anti‐HBV activity by inhibiting HBV replication, thus providing sound rationale for future MLN4924 clinical trial as a novel anti‐HBV therapy.
Collapse
Affiliation(s)
- Mingjie Xie
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Huiting Guo
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Guohua Lou
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jiping Yao
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yanning Liu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|