1
|
Chen Z, Cui Q, Ran Y, Achi JG, Chen Z, Rong L, Du R. A BSL-2 compliant mouse model of SARS-CoV-2 infection for efficient and convenient antiviral evaluation. J Virol 2024; 98:e0050424. [PMID: 38899934 PMCID: PMC11265351 DOI: 10.1128/jvi.00504-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Animal models of authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require operation in biosafety level 3 (BSL-3) containment. In the present study, we established a mouse model employing a single-cycle infectious virus replicon particle (VRP) system of SARS-CoV-2 that can be safely handled in BSL-2 laboratories. The VRP [ΔS-VRP(G)-Luc] contains a SARS-CoV-2 genome in which the spike gene was replaced by a firefly luciferase (Fluc) reporter gene (Rep-Luci), and incorporates the vesicular stomatitis virus glycoprotein on the surface. Intranasal inoculation of ΔS-VRP(G)-Luc can successfully transduce the Rep-Luci genome into mouse lungs, initiating self-replication of Rep-Luci and, accordingly, inducing acute lung injury mimicking the authentic SARS-CoV-2 pathology. In addition, the reporter Fluc expression can be monitored using a bioluminescence imaging approach, allowing a rapid and convenient determination of viral replication in ΔS-VRP(G)-Luc-infected mouse lungs. Upon treatment with an approved anti-SARS-CoV-2 drug, VV116, the viral replication in infected mouse lungs was significantly reduced, suggesting that the animal model is feasible for antiviral evaluation. In summary, we have developed a BSL-2-compliant mouse model of SARS-CoV-2 infection, providing an advanced approach to study aspects of the viral pathogenesis, viral-host interactions, as well as the efficacy of antiviral therapeutics in the future.IMPORTANCESevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious and pathogenic in humans; thus, research on authentic SARS-CoV-2 has been restricted to biosafety level 3 (BSL-3) laboratories. However, due to the scarcity of BSL-3 facilities and trained personnel, the participation of a broad scientific community in SARS-CoV-2 research had been greatly limited, hindering the advancement of our understanding on the basic virology as well as the urgently necessitated drug development. Previously, our colleagues Jin et al. had generated a SARS-CoV-2 replicon by replacing the essential spike gene in the viral genome with a Fluc reporter (Rep-Luci), which can be safely operated under BSL-2 conditions. By incorporating the Rep-Luci into viral replicon particles carrying vesicular stomatitis virus glycoprotein on their surface, and via intranasal inoculation, we successfully transduced the Rep-Luci into mouse lungs, developing a mouse model mimicking SARS-CoV-2 infection. Our model can serve as a useful platform for SARS-CoV-2 pathological studies and antiviral evaluation under BSL2 containment.
Collapse
Affiliation(s)
- Zinuo Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Yan Ran
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jazmin Galvan Achi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhaoyu Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
2
|
Zhang X, Xia Y, Li P, Wu Z, Li R, Cai J, Zhang Y, Wang G, Li Y, Tang W, Su W. Discovery of cyperenoic acid as a potent and novel entry inhibitor of influenza A virus. Antiviral Res 2024; 223:105822. [PMID: 38350497 DOI: 10.1016/j.antiviral.2024.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Influenza therapeutics with new targets and modes of action are urgently needed due to the frequent emergence of mutants resistant to currently available anti-influenza drugs. Here we report the in vitro and in vivo anti-influenza A virus activities of cyperenoic acid, a natural compound, which was isolated from a Chinese medicine Croton crassifolius Geise. Cyperenoic acid could potently suppress H1N1, H3N2 and H9N2 virus replication with IC50 values ranging from 0.12 to 15.13 μM, and showed a low cytotoxicity against MDCK cells (CC50 = 939.2 ± 60.0 μM), with selectivity index (SI) values ranging from 62 to 7823. Oral or intraperitoneal treatment of cyperenoic acid effectively protected mice against a lethal influenza virus challenge, comparable to the efficacy of Tamiflu. Additionally, cyperenoic acid also significantly reduced lung virus titers and alleviated influenza-induced acute lung injury in infected mice. Mechanism-of-action studies revealed that cyperenoic acid exhibited its anti-influenza activity during the entry stage of viral replication by inhibiting HA-mediated viral fusion. Simulation docking analyses of cyperenoic acid with the HA structures implied that cyperenoic acid binds to the stalk domain of HA in a cavity near the fusion peptide. Collectively, these results demonstrate that cyperenoic acid is a promising lead compound for the anti-influenza drug development and this research provides a useful small-molecule probe for studying the HA-mediated viral entry process.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, 510275, China
| | - Yiping Xia
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Peibo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, 510275, China
| | - Zhongnan Wu
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ruilin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Jialiao Cai
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yubo Zhang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guocai Wang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yaolan Li
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wei Tang
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, 510275, China.
| |
Collapse
|
3
|
Lin X, Zhu M, Zhao X, Si L, Dong M, Anirudhan V, Cui Q, Rong L, Du R. Optimization and applications of an in vivo bioluminescence imaging model of influenza A virus infections. Virol Sin 2023; 38:631-634. [PMID: 37141991 PMCID: PMC10436047 DOI: 10.1016/j.virs.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
•The in vivo BLI model of IAV infections can simplify the determination of viral load in living animals. •The in vivo BLI model of IAV infections allow longitudinal measurements of virus infection/spread in living animals. •The in vivo BLI model of IAV infections improved the throughput of animal models. •The advanced BLI models can facilitate studies in both basic and applied virology.
Collapse
Affiliation(s)
- Xiaojing Lin
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Murong Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Xiujuan Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 50355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
4
|
Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses 2023; 15:902. [PMID: 37112882 PMCID: PMC10142020 DOI: 10.3390/v15040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.
Collapse
Affiliation(s)
- Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Vladimir V. Zarubaev
- Laboratory of Experimental Virology, Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia;
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
5
|
Nalewaj M, Szabat M. Examples of Structural Motifs in Viral Genomes and Approaches for RNA Structure Characterization. Int J Mol Sci 2022; 23:ijms232415917. [PMID: 36555559 PMCID: PMC9784701 DOI: 10.3390/ijms232415917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between conserved structural motifs and their biological function in the virus replication cycle is the interest of many researchers around the world. RNA structure is closely related to RNA function. Therefore, technological progress in high-throughput approaches for RNA structure analysis and the development of new ones are very important. In this mini review, we discuss a few perspectives on the structural elements of viral genomes and some methods used for RNA structure prediction and characterization. Based on the recent literature, we describe several examples of studies concerning the viral genomes, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV). Herein, we emphasize that a better understanding of viral genome architecture allows for the discovery of the structure-function relationship, and as a result, the discovery of new potential antiviral therapeutics.
Collapse
|
6
|
Alqarni S, Cooper L, Galvan Achi J, Bott R, Sali VK, Brown A, Santarsiero BD, Krunic A, Manicassamy B, Peet NP, Zhang P, Thatcher GRJ, Gaisina IN, Rong L, Moore TW. Synthesis, Optimization, and Structure-Activity Relationships of Imidazo[1,2- a]pyrimidines as Inhibitors of Group 2 Influenza A Viruses. J Med Chem 2022; 65:14104-14120. [PMID: 36260129 DOI: 10.1021/acs.jmedchem.2c01329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The influenza A virus (IAV) is a highly contagious virus that causes pandemics and seasonal epidemics, which are major public health issues. Current anti-influenza therapeutics are limited partly due to the continuous emergence of drug-resistant IAV strains; thus, there is an unmet need to develop novel anti-influenza therapies. Here, we present a novel imidazo[1,2-a]pyrimidine scaffold that targets group 2 IAV entry. We have explored three different regions of the lead compound, and we have developed a series of small molecules that have nanomolar activity against oseltamivir-sensitive and -resistant forms of group 2 IAVs. These small molecules target hemagglutinin (HA), which mediates the viral entry process. Mapping a known small-molecule-binding cavity of the HA structure with resistant mutants suggests that these molecules bind to that cavity and block HA-mediated membrane fusion.
Collapse
Affiliation(s)
- Saad Alqarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Jazmin Galvan Achi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Ryan Bott
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Veeresh Kumar Sali
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andrew Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Bernard D Santarsiero
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Norton P Peet
- Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Pin Zhang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Gregory R J Thatcher
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Irina N Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois 60612, United States.,Chicago BioSolutions Inc., Chicago, Illinois 60612, United States
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States.,UI Cancer Center, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
7
|
Fu Y, Li P, Xu W, Liu Z, Wang C, Wang Q, Tang J, Li W, Lu L, Jiang S. Chemically Modified Bovine β-Lactoglobulin as a Broad-Spectrum Influenza Virus Entry Inhibitor with the Potential to Combat Influenza Outbreaks. Viruses 2022; 14:v14092055. [PMID: 36146861 PMCID: PMC9506557 DOI: 10.3390/v14092055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Frequent outbreaks of the highly pathogenic influenza A virus (AIV) infection, together with the lack of broad-spectrum influenza vaccines, call for the development of broad-spectrum prophylactic agents. Previously, 3-hydroxyphthalic anhydride-modified bovine β-lactoglobulin (3HP-β-LG) was proven to be effective against human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been used in the clinical control of cervical human papillomavirus (HPV) infections. Here, we show its efficacy in potently inhibiting infection by divergent influenza A and B viruses. Mechanistic studies suggest that 3HP-β-LG binds, possibly through its negatively charged residues, to the receptor-binding domain in the hemagglutinin 1 (HA1) subunit in the HA of the influenza virus, thus inhibiting the attachment of the HA to sialic acid on host cells. The intranasal administration of 3HP-β-LG led to the protection of mice against challenges by influenza A(H1N1)/PR8, A(H3N2), and A(H7N9) viruses. Furthermore, 3HP-β-LG is highly stable when stored at 50 °C for 30 days and it shows excellent safety in vitro and in vivo. Collectively, our findings suggest that 3HP-β-LG could be successfully repurposed as an intranasal prophylactic agent to prevent influenza virus infections during influenza outbreaks.
Collapse
Affiliation(s)
- Yuhong Fu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Peiyu Li
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People’s Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen 518052, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Zezhong Liu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Jiayi Tang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xie Tu Rd., Xuhui District, Shanghai 200032, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
- Correspondence: (L.L.); (S.J.); Tel.: +86-21-5423-7671 (L.L.); +86-21-5423-7673 (S.J.)
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Rd., Xuhui District, Shanghai 200032, China
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infection, Shenzhen Nanshan People’s Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen 518052, China
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, 2140 Xie Tu Rd., Xuhui District, Shanghai 200032, China
- Correspondence: (L.L.); (S.J.); Tel.: +86-21-5423-7671 (L.L.); +86-21-5423-7673 (S.J.)
| |
Collapse
|
8
|
Feng Q, Huang XY, Feng YM, Sun LJ, Sun JY, Li Y, Xie X, Hu J, Guo CY. Identification and analysis of B cell epitopes of hemagglutinin of H1N1 influenza virus. Arch Microbiol 2022; 204:594. [PMID: 36053375 PMCID: PMC9438888 DOI: 10.1007/s00203-022-03133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/27/2022]
Abstract
The frequent variation of influenza virus hemagglutinin (HA) antigen is the main cause of influenza pandemic. Therefore, the study of B cell epitopes of HA is of great significance in the prevention and control of influenza virus. In this study, the split vaccine of 2009 H1N1 influenza virus was used as immunogen, and the monoclonal antibodies (mAbs) were prepared by conventional hybridoma fusion and screening techniques. The characteristics of mAbs were identified by ELISA method, Western-blot test and hemagglutination inhibition test (HI). Using the obtained mAbs as a tool, the B cell epitopes of HA were predicted by ELISA blocking test, sandwich ELISA method and computer simulation method. Finally, four mAbs against HA antigen of H1N1 influenza virus were obtained. The results of ELISA and computer prediction showed that there were at least two types of epitopes on HA of influenza virus. The results of this study complemented the existing methods for predicting HA epitopes, and also provided a new method for predicting other pathogenic microorganisms.
Collapse
Affiliation(s)
- Qing Feng
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xiao-Yan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
| | - Yang-Meng Feng
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Li-Jun Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jing-Ying Sun
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Yan Li
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Jun Hu
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China.
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China.
| | - Chun-Yan Guo
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China.
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Xi'an, Shaanxi, China.
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
9
|
Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals (Basel) 2021; 14:ph14060587. [PMID: 34207368 PMCID: PMC8234048 DOI: 10.3390/ph14060587] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| |
Collapse
|