• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643727)   Today's Articles (2278)   Subscriber (50650)
For: Hu G, Pfingsten W. Data-driven machine learning for disposal of high-level nuclear waste: A review. ANN NUCL ENERGY 2023. [DOI: 10.1016/j.anucene.2022.109452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Number Cited by Other Article(s)
1
Muñoz D, Thomas AE, Cotton J, Bertrand J, Chinesta F. Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting. SENSORS (BASEL, SWITZERLAND) 2024;24:4931. [PMID: 39123978 PMCID: PMC11314968 DOI: 10.3390/s24154931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
2
Kim B, Manchuri AR, Oh GT, Lim Y, Son Y, Choi S, Kang M, Jang J, Ha J, Cho CH, Lee MW, Lee DS. Experimental analysis and prediction of radionuclide solubility using machine learning models: Effects of organic complexing agents. JOURNAL OF HAZARDOUS MATERIALS 2024;469:134012. [PMID: 38492397 DOI: 10.1016/j.jhazmat.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
3
Luo J, Ma X, Ji Y, Li X, Song Z, Lu W. Review of machine learning-based surrogate models of groundwater contaminant modeling. ENVIRONMENTAL RESEARCH 2023;238:117268. [PMID: 37776938 DOI: 10.1016/j.envres.2023.117268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
4
Machine Learning with Gradient-Based Optimization of Nuclear Waste Vitrification with Uncertainties and Constraints. Processes (Basel) 2022. [DOI: 10.3390/pr10112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA