1
|
Saranya I, Preetha D, Nivruthi S, Selvamurugan N. A comprehensive bioinformatic analysis of the role of TGF-β1-stimulated activating transcription factor 3 by non-coding RNAs during breast cancer progression. Comput Biol Chem 2024; 113:108208. [PMID: 39276678 DOI: 10.1016/j.compbiolchem.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
A potent growth inhibitor for normal mammary epithelial cells is transforming growth factor beta 1 (TGF-β1). When breast tissues lose the anti-proliferative activity of this factor, invasion and bone metastases increase. Human breast cancer (hBC) cells express more activating transcription factor 3 (ATF3) when exposed to TGF-β1, and this transcription factor is essential for BC development and bone metastases. Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and microRNAs (miRNAs), have emerged as key regulators controlling several cellular processes. In hBC cells, TGF-β1 stimulated the expression of hsa-miR-4653-5p that putatively targets ATF3. Bioinformatics analysis predicted that hsa-miR-4653-5p targets several key signaling components and transcription factors, including NFKB1, STAT1, STAT3, NOTCH1, JUN, TCF3, p300, NRF2, SUMO2, and NANOG, suggesting the diversified role of hsa-miR-4653-5p under physiological and pathological conditions. Despite the high abundance of hsa-miR-4653-5p in hBC cells, the ATF3 level remained elevated, indicating other ncRNAs could inhibit hsa-miR-4653-5p's activity. In silico analysis identified several circRNAs having the binding sites for hsa-miR-4653-5p, indicating the sponging activity of circRNAs towards hsa-miR-4653-5p. The study's findings suggest that TGF-β1 regulates circRNAs and hsa-miR-4653-5p, which in turn affects ATF3 expression, thus influencing BC progression and bone metastasis. Therefore, focusing on the TGF-β1/circRNAs/hsa-miR-4653-5p/ATF3 network could lead to new ways of diagnosing and treating BC.
Collapse
Affiliation(s)
- Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Dilipkumar Preetha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Sasi Nivruthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| |
Collapse
|
2
|
Lei H, Zhou J, Liu F, Han Y, Chai Y, Yuan R. A Fluorescence Light-Up 3D DNA Walker Driven and Accelerated by Endogenous Adenosine-5'-triphosphate for Sensitive and Rapid Label-Free MicroRNA Detection and Imaging in Living Cells. Anal Chem 2024; 96:9097-9103. [PMID: 38768044 DOI: 10.1021/acs.analchem.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, a fluorescence light-up 3D DNA walker (FLDW) was powered and accelerated by endogenous adenosine-5'-triphosphate (ATP) molecules to construct a biosensor for sensitive and rapid label-free detection and imaging of microRNA-221 (miRNA-221) in malignant tumor cells. Impressively, ATP as the driving force and accelerator for FLDW could significantly accelerate the operation rate of FLDW, reduce the likelihood of errors in signaling, and improve the sensitivity of detection and imaging. When FLDW was initiated by output DNA H1-op transformed by target miRNA-221, G-rich sequences in the S strand, anchored to AuNP, were exposed to form G-quadruplexes (G4s), and thioflavin T (ThT) embedded in the G4s emitted intense fluorescence to realize sensitive and rapid detection of target miRNA-221. Meanwhile, the specific binding of ThT to G4 with a weak background fluorescence response was utilized to enhance the signal-to-noise ratio of the label-free assay straightforwardly and cost-effectively. The proposed FLDW system could realize sensitive detection of the target miRNA-221 in the range of 1 pM to 10 nM with a detection limit of 0.19 pM by employing catalytic hairpin assembly (CHA) to improve the conversion of the target. Furthermore, by harnessing the abundant ATP present in the tumor microenvironment, FLDW achieved rapid and accurate imaging of miRNA-221 in cancer cells. This strategy provides an innovative and high-speed label-free approach for the detection and imaging of biomarkers in cancer cells and is expected to be a powerful tool for bioanalysis, diagnosis, and prognosis of human diseases.
Collapse
Affiliation(s)
- Hongmin Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, and Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, and Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, and Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yichen Han
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, and Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, and Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, and Chongqing Engineering Laboratory of Nanomaterials & Sensor Technologies, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
3
|
Ma J, Li X, Qiu Z, Zhu C, Wu Z, Da M. Correlation of mir-221-3p differential expression with clinical characteristics of gastric cancer patients. Mol Biol Rep 2024; 51:69. [PMID: 38175275 DOI: 10.1007/s11033-023-08924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common digestive malignancies. Although miR-221-3p was defined as a novel biomarker in many types of cancer, the relationship between its expression differences and the clinicopathological characteristics and prognosis of GC patients was yet to be fully understood. METHODS AND RESULTS TCGA database was utilized to predict the potential biological function of miR-221-3p in GC. QRT-PCR and RNA FISH were performed to detect the expression levels of miR-221-3p in GC. The miR-221-3p expression levels in GC tissues and cells were significantly higher than those in paracancerous tissues (p < 0.001) and normal gastric mucosal cells (p < 0.05). Higher expression levels of miR-221-3p were associated with tumor diameter ≥ 4 cm (χ2 = 5.519, p = 0.019), cTNM stage (III + IV) (χ2 = 28.013, p = 0.000), lymph node metastasis (χ2 = 23.272, p = 0.000) and distant metastasis (χ2 = 7.930, p = 0.005). Kaplan-Meier survival analysis showed a better prognosis for GC patients with miR-221-3p low expression(HR = 4.520, 95% CI: 1.844-11.075). CONCLUSIONS miR-221-3p is highly expressed in GC tissues, which plays an important role in tumorigenesis, invasion and metastasis. miR-221-3p may become an important biomarker and potential molecular therapeutic target for patients with GC.
Collapse
Affiliation(s)
- Jichun Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Xingliang Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhisheng Qiu
- Department of Surgical Oncology, Gansu Provincial Hospital, Donggang West 204 Road, Lanzhou City, 730000, Gansu Province, PR China
| | - Ciba Zhu
- The First School of Clinical Medicine, Gansu University of Traditional Medicine, Lanzhou, 730000, PR China
| | - Ziyao Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China
| | - Mingxu Da
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China.
- Department of Surgical Oncology, Gansu Provincial Hospital, Donggang West 204 Road, Lanzhou City, 730000, Gansu Province, PR China.
| |
Collapse
|
4
|
Li S, Cai X, Chen L, Lin M, Zhu Z, Xiao H, Nie P, Chen Q, Yang X. Inhibition of hepatocellular carcinoma growth via modulation of the miR-221/SOX11 axis by curcumin and berberine. PeerJ 2023; 11:e16593. [PMID: 38084140 PMCID: PMC10710771 DOI: 10.7717/peerj.16593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal malignancy that has limited treatment options. This study focused on the potential therapeutic effects of curcumin (CUR) and berberine (BBR) on the miR-221/SRY-box transcription factor 11 (SOX11) axis in HCC. We investigated the combined effects of CUR and BBR on HEPG2 and Huh7 cell survival and miR-221 expression using Cell Counting Kit-8 assays and RT-qPCR, respectively. Western blotting was used to detect changes in the apoptosis-related caspase-3/9 protein levels. We performed bioinformatics analysis and dual-luciferase assays and measured apoptotic protein levels to assess the role of the miR-221/SOX11 axis in mediating the effects of CUR-BBR. Both CUR and BBR suppressed HCC cell growth in a dose-dependent manner, with the most potent combined effect observed at a 2:1 ratio. CUR-BBR treatment significantly downregulated miR-221 expression, and miR-221 overexpression partially reversed the CUR-BBR-mediated decrease in cell survival. In addition, SOX11 was found to be a direct target of miR-221. CUR-BBR treatment upregulated SOX11 expression, and overexpression of SOX11 restored the inhibitory effects of CUR-BBR on cell growth, migration, and invasion and promoted apoptosis in the presence of miR-221. Furthermore, CUR-BBR activated pro-apoptotic proteins caspase-3/9 through the miR-221/SOX11 axis. The combined effect of CUR-BBR played an important role in inhibiting the growth of HCC cells. This combined effect was achieved by regulating the miR-221/SOX11 axis and activating the synthesis of pro-apoptotic proteins. Our findings highlight a promising combined therapeutic approach for HCC and underscore the importance of targeting the miR-221/SOX11 axis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Internal Medicine, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoliang Cai
- Department of Internal Medicine, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Liang Chen
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Manbian Lin
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Ziqi Zhu
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Huihuang Xiao
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Pingping Nie
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Quanwen Chen
- Department of Medical Oncology, Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoyu Yang
- Fuzhou Hospital of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
Liu J, Chen J, Zhang Y, Liu L, Guo Y, Yuan R, Chai Y. Selenium and nitrogen co-doped carbon dots with highly efficient electrochemiluminescence for ultrasensitive detection of microRNA. Biosens Bioelectron 2023; 240:115607. [PMID: 37660459 DOI: 10.1016/j.bios.2023.115607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023]
Abstract
In this work, selenium and nitrogen co-doped carbon dots (SeN-CDs) possessing highly efficient electrochemiluminescence (ECL) and excellent biocompatibility were synthesized as a new emitter with S2O82- as a coreactant for constructing a biosensor to detect microRNA-221 (miRNA-221) sensitively. Notably, the SeN-CDs exhibited superior ECL performance compared with the N-doped CDs, in which selenium with excellent redox activity served as a coreaction accelerator for facilitating the electroreduction of S2O82- to significantly improve ECL efficiency. Furthermore, target-induced T7 exonuclease (T7 Exo)-assisted double cycle amplification strategy could convert traces of target miRNA-221 into large amounts of output DNA to capture three-dimensional (3D) nanostructures (DTN-Au NPs-DOX-Fc) loaded with large amounts of ECL signal quencher. The constructed biosensor could realize ultrasensitive detection of miRNA-221 and has a low detection limit reaching 2.3 aM, with a successful application to detect miRNA-221 in lysate of Hela and MHCC97-L cancer cell. This work explored a novel method to strengthen the ECL performance of CDs to construct an ECL biosensing platform with sensitive detecting of biomarkers and disease diagnosis.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jie Chen
- Department of Endocrinology, 9 th People's Hospital of Chongqing, Chongqing, 400700, PR China
| | - Yue Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Linlei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - YuZhuo Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
6
|
Ji ZH, Gao F, Xie WY, Wu HY, Ren WZ, Yuan B. Mammary Epithelial Cell-Derived Exosomal miR-221-3p Regulates Macrophage Polarization by Targeting Igf2 bp2 during Mastitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14742-14757. [PMID: 37757458 DOI: 10.1021/acs.jafc.3c03350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mastitis affects the milk quality and yield and is the most expensive disease in dairy cows. Elucidation of the pathogenesis of mastitis is of great importance for disease control. As a medium of intercellular communication, exosomes play key roles in various inflammatory diseases by regulating macrophage polarization. However, the molecular factors in exosomes that mediate the intercellular communication between mammary epithelial cells and macrophages during mastitis remain to be further explored. In this study, we isolated and identified mammary epithelial cell-derived exosomes from a lipopolysaccharide (LPS)/lipoteichoic acid (LTA)-induced mastitis cell model, and we demonstrated that exosomes from LPS/LTA-stimulated mammary epithelial cells promote M1-type macrophage polarization in vivo and in vitro. Based on the results of high-throughput sequencing, we constructed a differential miRNA (microRNA) expression profile of exosomes and demonstrated that miR-221-3p was highly expressed. Furthermore, in vivo and in vitro experiments, combined with coculture experiments and fluorescence tracing, showed that high miR-221-3p expression promoted M1-type macrophage polarization, demonstrating the transcellular role of miR-221-3p. Mechanistically, dual luciferase reporter gene assays and rescue assays showed that miR-221-3p regulated macrophage polarization by targeting Igf2bp2. The results of this study will deepen our understanding of the pathogenesis of mastitis, and the molecular regulatory axis that was established in this study is expected to be a target for mastitis treatment.
Collapse
Affiliation(s)
- Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Hong-Yu Wu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
- Jilin Academy of Agricultural Sciences, Jilin 132101, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China
| |
Collapse
|
7
|
Li J, Wang X, Ren M, He S, Zhao Y. Advances in experimental animal models of hepatocellular carcinoma. Cancer Med 2023; 12:15261-15276. [PMID: 37248746 PMCID: PMC10417182 DOI: 10.1002/cam4.6163] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with insidious early symptoms, easy metastasis, postoperative recurrence, poor drug efficacy, and a high drug resistance rate when surgery is missed, leading to a low 5-year survival rate. Research on the pathogenesis and drugs is particularly important for clinical treatment. Animal models are crucial for basic research, which is conducive to studying pathogenesis and drug screening more conveniently and effectively. An appropriate animal model can better reflect disease occurrence and development, and the process of anti-tumor immune response in the human body. This review summarizes the classification, characteristics, and advances in experimental animal models of HCC to provide a reference for researchers on model selection.
Collapse
Affiliation(s)
- Jing Li
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Xin Wang
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Mudan Ren
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Shuixiang He
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Yan Zhao
- Department of GastroenterologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
8
|
Wang L, Chen X, Meng F, Huang T, Wang S, Zheng Z, Zheng G, Li W, Zhang J, Liu Y. α2,6-Sialylation promotes hepatocellular carcinoma cells migration and invasion via enhancement of nSmase2-mediated exosomal miRNA sorting. J Physiol Biochem 2023; 79:19-34. [PMID: 35984620 DOI: 10.1007/s13105-022-00917-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Exosomes have a critical role in the intercellular communication and metastatic progression of hepatocellular carcinoma (HCC). Recently, our group showed that α2, 6-sialylation played an important role in the proliferation- and migration-promoting effects of cancer-derived exosomes. However, the molecular basis remains elusive. In this study, the mechanism of α2, 6-sialylation-mediated specific microRNAs (miRNA) sorting into exosomes was illustrated. We performed miRNA profiling analysis to compare exosomes from HCC cell lines that differ only in α2, 6-sialylation status. A total of 388 differentially distributed miRNAs were identified in wild-type and β-galactoside α2, 6-sialyltransferase I (ST6Gal-I) knockdown MHCC-97H cells-derived exosomes. Neutral sphingomyelinase-2 (nSmase2), an important regulator mediating the sorting of exosomal miRNAs, was found to be a target of ST6Gal-I. The reduction of α2, 6-sialylation could impair the activity of nSmase2, as well as the nSmase2-dependent exosomal miRNAs sorting. This α2,6-sialylation-dependent sorting exerted an augmentation of motility on recipient HCC cells. Our data further demonstrated that α2,6-sialylation-mediated sorting of exosomal miR-100-5p promoted the migration and invasion of recipient HepG2 cells via the PI3K/AKT signaling pathway. The cellular metastasis-related gene CLDN11 was confirmed as a direct target of exosomal miR-100-5p, which elevated the mobility of recipient HCC cells. In conclusion, our results showed that α2,6-sialylation modulates nSmase2-dependent exosomal miRNAs sorting and promotes HCC progression.
Collapse
Affiliation(s)
- Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Xixi Chen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Fanxu Meng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Tianmiao Huang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Zhichao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Liaoning, China
| | - Guoliang Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Liaoning, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China.
| | - Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China.
| |
Collapse
|
9
|
MicroRNAs miR-584-5p and miR-425-3p Are Up-Regulated in Plasma of Colorectal Cancer (CRC) Patients: Targeting with Inhibitor Peptide Nucleic Acids Is Associated with Induction of Apoptosis in Colon Cancer Cell Lines. Cancers (Basel) 2022; 15:cancers15010128. [PMID: 36612125 PMCID: PMC9817681 DOI: 10.3390/cancers15010128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Liquid biopsy has dramatically changed cancer management in the last decade; however, despite the huge number of miRNA signatures available for diagnostic or prognostic purposes, it is still unclear if dysregulated miRNAs in the bloodstream could be used to develop miRNA-based therapeutic approaches. In one author's previous work, nine miRNAs were found to be dysregulated in early-stage colon cancer (CRC) patients by NGS analysis followed by RT-dd-PCR validation. In the present study, the biological effects of the targeting of the most relevant dysregulated miRNAs with anti-miRNA peptide nucleic acids (PNAs) were verified, and their anticancer activity in terms of apoptosis induction was evaluated. Our data demonstrate that targeting bloodstream up-regulated miRNAs using anti-miRNA PNAs leads to the down-regulation of target miRNAs associated with inhibition of the activation of the pro-apoptotic pathway in CRC cellular models. Moreover, very high percentages of apoptotic cells were found when the anti-miRNA PNAs were associated with other pro-apoptotic agents, such as sulforaphane (SFN). The presented data sustain the idea that the targeting of miRNAs up-regulated in the bloodstream with a known role in tumor pathology might be a tool for the design of protocols for anti-tumor therapy based on miRNA-targeting molecules.
Collapse
|
10
|
Liu Y, Hu C, Qu X, Chen H, Liu L, Zhou L, Liu S, Li G, Zhou Y. Novel Role of Long Non-Coding RNA ASAP1-IT1 in Progression of Hepatocellular Carcinoma. Front Oncol 2022; 12:746896. [PMID: 35712508 PMCID: PMC9192332 DOI: 10.3389/fonc.2022.746896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022] Open
Abstract
The long non-coding RNA (lncRNA) ASAP1-IT1 has been recently shown to aberrantly increase in ovarian and bladder cancer, while its role in other malignancies remains unexplored. This study was to characterize the expression and assess the potential role of ASAP1-IT1 in hepatocellular carcinoma (HCC). Fifty-four paired HCC and histologically normal tissues were obtained from HCC patients. Human HCC cell lines (HepG2, Huh7, SMMC-7721, and BEL-7402) and a normal liver cell line (LO2) were used for in vitro studies. ASAP1-IT1-specific siRNAs were used to silence ASAP1-IT1 expression, while the pcDNA-ASAP1-IT1 vector was constructed to up-regulate its expression. In situ hybridization and qRT-PCR were performed to characterize subcellular localization and expression of ASAP1-IT1. Cell proliferation and migration assays were conducted to examine the role of ASAP1-IT1 in the progression of HCC. In silico analysis was conducted to predict putative miRNA binding sites, which were validated by luciferase reporter assays. ASAP1-IT1 levels were significantly increased in HCC tissues and cells compared with controls. Notably, higher ASAP1-IT1 levels were significantly associated with poorer prognosis of HCC patients. In situ hybridization analysis revealed that ASAP1-IT1 was mainly localized in the nucleus of hepatoma cells and differentially expressed in trabecular, compact, and pseudoglandular forms of liver cancer. Furthermore, knockdown of ASAP1-IT1 significantly suppressed cell proliferation and migration, while its overexpression significantly promoted cell proliferation and migration of HCC cells. Mechanistically, ASAP1-IT1 might exert its role in HCC progression, at least in part, by directly interacting with miR-221-3p. In conclusion, ASAP1-IT1 is abnormally elevated in HCC, and higher levels are correlated with poorer prognosis. An underlying mechanism has been proposed for ASAP1-IT1-associated promotion of proliferation and migration in HCC cells. These findings have provided evidence supporting the oncogenic role of ASAP1-IT1 in HCC.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Second Affiliated Hospital, University of South China, Hengyang, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengguang Hu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Honghui Chen
- Department of Gastroenterology, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Logen Liu
- Clinical Research Center, The Second Affiliated Hospital, University of South China, Hengyang, China
- Key Laboratory for Molecular Diagnosis and Precision Medicine in Hengyang, The Second Affiliated Hospital, University of South China, Henyang, China
| | - Linlin Zhou
- Clinical Research Center, The Second Affiliated Hospital, University of South China, Hengyang, China
- Key Laboratory for Molecular Diagnosis and Precision Medicine in Hengyang, The Second Affiliated Hospital, University of South China, Henyang, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yuanping Zhou, ; ; Guoqing Li, ; Side Liu,
| | - Guoqing Li
- Department of Gastroenterology, Second Affiliated Hospital, University of South China, Hengyang, China
- Key Laboratory for Molecular Diagnosis and Precision Medicine in Hengyang, The Second Affiliated Hospital, University of South China, Henyang, China
- *Correspondence: Yuanping Zhou, ; ; Guoqing Li, ; Side Liu,
| | - Yuanping Zhou
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yuanping Zhou, ; ; Guoqing Li, ; Side Liu,
| |
Collapse
|