1
|
Kiel J, Applewhite AI, Bertasi TGO, Bertasi RAO, Seemann LL, Costa LMC, Helmi H, Pujalte GGA. Ketorolac Injections for Musculoskeletal Conditions: A Narrative Review. Clin Med Res 2024; 22:19-27. [PMID: 38609144 PMCID: PMC11149950 DOI: 10.3121/cmr.2024.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 04/14/2024]
Abstract
Musculoskeletal conditions of the upper and lower extremities are commonly treated with corticosteroid injections. Ketorolac, a parenteral nonsteroidal anti-inflammatory drug, represents an alternative injectant for common shoulder, hip, and knee conditions. A review of the current literature was conducted on the efficacy of ketorolac injection in musculoskeletal diseases. Several studies support the use and efficacy of ketorolac injection in subacromial bursitis, adhesive capsulitis, and hip and knee osteoarthritis. Given the systemic effects of glucocorticoid injections, ketorolac may be a safe and effective alternative in patients with musculoskeletal disease. However, more evidence is required to better understand the effects ketorolac has on the human body during inflammatory processes.
Collapse
Affiliation(s)
- John Kiel
- Department of Emergency Medicine, University of Florida, Jacksonville, Florida
- Department of Sports Medicine, University of Florida, Jacksonville, Florida
| | | | - Tais G O Bertasi
- Department of Medicine, Mount Sinai Morningside-West, New York, New York
| | | | - LaRae L Seemann
- Department of Family Medicine, Mayo Clinic, Jacksonville, Florida
| | - Lorena M C Costa
- Department of Family Medicine, Mayo Clinic, Jacksonville, Florida
- Current affiliation: Department of Pathology at Atrium Health, Wake Forest Baptist, Winston-Salem, North Carolina
| | - Haytham Helmi
- Department of Emergency Medicine, University of Florida, Jacksonville, Florida
| | - George G A Pujalte
- Department of Family Medicine, Mayo Clinic, Jacksonville, Florida
- Division of Sports Medicine, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
2
|
Wang L, Ding Y, Tang Q, Niu X. Preparation, Properties and Therapeutic Effect of a TPL Nanoparticle Thermosensitive Gel for Intra-Articular Injection. Molecules 2023; 28:4659. [PMID: 37375214 DOI: 10.3390/molecules28124659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Most injectable preparations for the articular cavity are solution-type preparations that are frequently administered because of rapid elimination. In this study, triptolide (TPL), an effective ingredient in the treatment of rheumatoid arthritis (RA), was prepared in the form of a nanoparticle thermosensitive gel (TPL-NS-Gel). The particle size distribution and gel structure were investigated by TEM, laser particle size analysis and laser capture microdissection. The effect of the nanoparticle carrier material PLGA on the phase transition temperature was investigated by 1H variable temperature NMR and DSC. The tissue distribution, pharmacokinetic behavior, four inflammatory factors and therapeutic effect were determined in a rat RA model. The results suggested that PLGA increased the gel phase transition temperature. The drug concentration of the TPL-NS-Gel group in joint tissues was higher than that in other tissues at different time points, and the retention time was longer than that of the TPL-NS group. After 24 days of administration, TPL-NS-Gel significantly improved the joint swelling and stiffness of the rat models, and the improvement degree was better than that of the TPL-NS group. TPL-NS-Gel significantly decreased the levels of hs-CRP, IL-1, IL-6 and TNF-α in serum and joint fluid. There was a significant difference between the TPL-NS-Gel and TPL-NS groups on Day 24 (p < 0.05). Pathological section results showed that inflammatory cell infiltration was lower in the TPL-NS-Gel group, and no other obvious histological changes were observed. Upon articular injection, the TPL-NS-Gel prolonged drug release, reduced the drug concentration outside the articular tissue and improved the therapeutic effect in a rat RA model. The TPL-NS-Gel can be used as a new type of sustained-release preparation for articular injection.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Pharmacy, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yongliang Ding
- Department of Pharmacy, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Qian Tang
- Department of Pharmacy, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Xiaodong Niu
- Department of Pharmacy, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| |
Collapse
|
3
|
Selig DJ, Kress AT, Horton IM, Livezey JR, Sadik EJ, DeLuca JP. Pharmacokinetics, safety and efficacy of intra-articular non-steroidal anti-inflammatory drug injections for the treatment of osteoarthritis: A narrative review. J Clin Pharm Ther 2022; 47:1122-1133. [PMID: 35505520 PMCID: PMC9542014 DOI: 10.1111/jcpt.13669] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
Abstract
What is known and Objective Osteoarthritis (OA) is a common cause of joint disease and activity limitation in adults. Common therapies to treat OA‐related pain are oral and topical non‐steroidal anti‐inflammatory drugs (NSAIDs) and intra‐articular (IA) corticosteroids. However, prolonged courses of oral NSAIDs are associated with systemic adverse effects and repeat IA corticosteroid injections may cause cartilage degeneration. IA NSAIDs may be an alternative therapy possibly minimizing systemic side effects while maintaining efficacy. Therefore, we sought to summarize the pharmacokinetics, safety and efficacy of IA NSAIDs to help providers make a more informed decision on the use of IA NSAIDs. Methods We searched the National Library of Medicine Database with terms “intraarticular and nsaid”, yielding 1032 results. Only traditional formulations of NSAIDs were considered for inclusion. Animal studies were included if animals were healthy or if the method of arthritis induction was a reasonable model of osteoarthritis. Human studies were included if humans were healthy or if the primary disease studied was osteoarthritis of a large joint. Of 1032 results, 31 research articles met the inclusion criteria and were summarized in this review. Results and Discussion We found that single doses of IA NSAIDs provided far less total systemic and synovial exposure compared to a one week course of oral NSAIDs, but maximum concentrations to the synovium with IA administration were much higher. IA NSAIDs had an excellent safety profile in small animals, large animals and humans, although these injections were associated with non‐specific cartilage inflammation in healthy animals. In animal models, IA NSAIDs had similar efficacy to PO NSAIDs in treating OA‐related pain. In humans, IA NSAIDs had similar efficacy to PO NSAIDS and IA corticosteroids in treating OA‐related pain; however, many trials did not have a placebo control and outcome measures were heterogeneous. What is new and Conclusion Overall, single doses of IA NSAIDs appear safe and efficacious across animals and humans. The optimal use of IA NSAIDs is still to be determined and further research is needed. However IA NSAIDs may be an additional beneficial therapy to treat OA‐related pain. Potential uses may be to augment IA corticosteroids injections, to interrupt multiple IA corticosteroid injections or as an alternative in patients that are high risk for corticosteroid‐related adverse events.
Collapse
Affiliation(s)
- Daniel J Selig
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Adrian T Kress
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Isaiah M Horton
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Jeffrey R Livezey
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Eliot J Sadik
- Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Jesse P DeLuca
- Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Wang L, Che K, Liu Y. Pharmacokinetics, distribution and efficacy of triptolide PLGA microspheres after intra-articular injection in a rat rheumatoid arthritis model. Xenobiotica 2021; 51:703-715. [PMID: 33938387 DOI: 10.1080/00498254.2021.1923860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The UPLC-MS/MS method was established with good precision, accuracy and stability to determine the concentrations of TPL in biological samples, such as heart, liver, spleen, lung, kidney, plasma and joint.After being made into microspheres, TPL can stay in the joint tissue for a long time, further reducing the number of times joint cavity administration, and its sustained release effect was significantly improved compared with the solution dosage form.The pharmacokinetic parameters, such as AUC(0-t), AUC(0-∞), T1/2, Tmax, MTR(0-t), and MTR(0-∞) of the TPL-PLGA-MS group were significantly increased compared with those of the solution group. The microsphere preparation could significantly slow the release rate of the drug from the joint cavity.TPL-PLGA-MS can significantly reduce the expression of inflammatory factors such as IL-1, IL-6, TNF-α and hs-CRP. TPL-PLGA-MS for articular cavity injection has potential as a new preparation for the treatment of RA.
Collapse
Affiliation(s)
- Lijuan Wang
- Pharmacy College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Keke Che
- Department of Pharmacy, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yan Liu
- Pharmacy College, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
5
|
Chen R, Lin L, Wang H, Zhai X, Liang Y, Zhao B, Yu Z, Li K, Shen W. Effects of Morphologies of Thermosensitive Electrospun Nanofibers on Controllable Drug Release. Tissue Eng Part A 2020; 27:724-732. [PMID: 33143573 DOI: 10.1089/ten.tea.2020.0258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrospun nanofibers is a promising and versatile avenue for building controlled drug release system because of the facile fabrication and the broad range of polymer materials. This research systematically studied the morphological effect of thermosensitive electrospun nanofibers, including porous and coaxial structures, on controllable drug release. Three types of drugs, nicotinamide, paracetamol, and ibuprofen, with different hydrophilicity were applied in this study. The data of drug release were all fitted to the first-order kinetic model regardless of the drug properties, and the release rates paralleled with their hydrophilicity. Sol-gel phase transition of the thermosensitive poly(N-isopropylacrylamide) (PNIPAAm) hydrogel led to slower drug release at 37°C compared with those at 25°C. Regarding morphology, coaxial nanofibers could provide higher loading efficiency and slower drug release rather than porous nanofibers. Our research highlighted the overall effects of compound property, temperature, and the morphological structures of thermosensitive electrospun nanofibers on the controlled drug release. Our results concluded that hydrophobic drug encapsulated in the core-shell PNIPAAm nanofibers could perform excellent sustained release and also controllable release under temperature stumuli. Impact statement The behaviors for the controlled release of drugs loaded in the thermosensitive electrospun nanofibers could be affected by various factors including the properties of loaded drug, morphologies of nanofibrous, and lower critical solution temperatures of thermosensitive hydrogels. However, few systematical investigations have been performed in this area. In this article, we designed and fabricated porous and coaxial thermosensitive poly(N-isopropylacrylamide) electrospun nanofibers with different drug loading to study the comprehensive effect. This study suggested when adopting thermosensitive electrospun hydrogel nanofibers as the controllable drug release carrier, the hydrophilicity of loaded compounds and the morphologies of nanofibers are necessary to be optimized.
Collapse
Affiliation(s)
- Rong Chen
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| | - Lulu Lin
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| | - Hanyang Wang
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Xinhui Zhai
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| | - Yuwen Liang
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Benzheng Zhao
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Zhuo Yu
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Kaiyue Li
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| |
Collapse
|