1
|
Zhou C, Xu X, Huang T, Kaner J. Effect of different postures and loads on joint motion and muscle activity in older adults during overhead retrieval. Front Physiol 2024; 14:1303577. [PMID: 38304288 PMCID: PMC10830688 DOI: 10.3389/fphys.2023.1303577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024] Open
Abstract
Introduction: Pain is a common health problem among older adults worldwide. Older adults tend to suffer from arm, lumbar, and back pain when using hanging cabinets. Methods: This study used surface electromyography to record muscle activity and a motion capture system to record joint motion to research effects of different loads and retrieval postures on muscle activity and joint range of motion when older adults retrieve objects from a high place, to provide optimised feedback for the design of hanging cabinet furniture. Results: We found that: 1) The activity of BB (Biceps brachii) on the side of the body interacting with the cabinet door was greater than that of UT (Upper trapezius) and BR (Brachial radius) when retrieving objects from a high place, the activity of UT on the side of the body interacting with a heavy object was greater than that of BB and BR. 2) The activity of UT decreases when the shoulder joint angle is greater than 90°, but the activity of BB increases as the angle increases. In contrast, increasing the object's mass causes the maximum load on the shoulder joint. 3) Among the different postures for overhead retrieval, alternating between the right and left hand is preferable for the overhead retrieval task. 4) Age had the most significant effect on overhead retrieval, followed by height (of person), and load changes were significantly different only at the experiment's left elbow joint and the L.BR. 5) Older adults took longer and exerted more effort to complete the task than younger adults, and static exercise in older adults may be more demanding on muscle activity in old age than powered exercise. Conclusion: These results help to optimise the design of hanging cabinet furniture. Regarding the height of hanging cabinets, 180 cm or less is required for regular retrieval movements if the human height is less than 150 cm. Concerning the depth of the hanging cabinets, different heights chose different comfort distances, which translated into the depth of the hanging cabinets; the greater the height, the greater the depth of the hanging cabinets to use.
Collapse
Affiliation(s)
- Chengmin Zhou
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, Jiangsu, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing, China
| | - Xue Xu
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ting Huang
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jake Kaner
- School of Art and Design, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
2
|
Zawadka M, Smolka J, Skublewska-Paszkowska M, Lukasik E, Jablonski M, Gawda P. The influence of sedentary behaviour on lumbar-pelvic kinematics during squatting and forward bending among physically active students. ERGONOMICS 2023; 66:101-112. [PMID: 35361072 DOI: 10.1080/00140139.2022.2061051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Prolonged sitting may involve several mechanisms that make it a risk factor for low back pain. The aim of this study was to investigate lumbar-pelvic kinematics and multifidus muscle (MF) activity during squatting and forward bending in relation to the sedentary behaviour of physically active students. Sixty-three students were divided into two groups according to the time spent in a sitting position during the day: 'high' (>7 h/day); 'low' (≤7 h/day). Lumbar-pelvic ratios, ranges of motion, angular velocities, and MF flexion-relaxation phenomenon were investigated. Data were obtained using the optical motion analysis system, and surface electromyography. The results indicated that lumbar-pelvic ratios during both tasks and velocity of lumbar spine during squatting were significantly greater in the 'high' than in the 'low' sitting group. Muscle activity showed no differences between groups. Prolonged sitting can be considered a factor that slightly, but statistically significantly influences the lumbar-pelvic kinematics in physically active people.Practitioner summary: Lumbar-pelvic kinematics can be altered by prolonged sitting in physically active students. Lumbar-pelvic ratios during squatting and forward bending and lumbar spine velocity during squatting were significantly greater in the 'high' than in the 'low' sitting group. Sedentary behaviour should be considered during an assessment of movement patterns.Abbreviations: BMI: body mass index; ERR: extension-relaxation ratio; FRP: flexion-relaxation phenomenon; FRR: flexion-relaxation ratio; IPAQ: International Physical Activity Questionnaire; LBP: low back pain; METs: metabolic equivalent of tasks; MF: multifidus muscle; PA: physical activity; ROM: range of motion; sEMG: surface electromyography.
Collapse
Affiliation(s)
- Magdalena Zawadka
- Department of Sports Medicine, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Jakub Smolka
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
| | - Maria Skublewska-Paszkowska
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
| | - Edyta Lukasik
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
| | - Mirosław Jablonski
- Department of Rehabilitation and Orthopedics, Faculty of Medicine, Medical University of Lublin, Lublin, Poland
| | - Piotr Gawda
- Department of Sports Medicine, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
3
|
Yunus MNH, Jaafar MH, Mohamed ASA, Azraai NZ, Amil N, Zein RM. Biomechanics Analysis of the Firefighters' Thorax Movement on Personal Protective Equipment during Lifting Task Using Inertial Measurement Unit Motion Capture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14232. [PMID: 36361112 PMCID: PMC9658051 DOI: 10.3390/ijerph192114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Back injury is a common musculoskeletal injury reported among firefighters (FFs) due to their nature of work and personal protective equipment (PPE). The nature of the work associated with heavy lifting tasks increases FFs' risk of back injury. This study aimed to assess the biomechanics movement of FFs on personal protective equipment during a lifting task. A set of questionnaires was used to identify the prevalence of musculoskeletal pain experienced by FFs. Inertial measurement unit (IMU) motion capture was used in this study to record the body angle deviation and angular acceleration of FFs' thorax extension. The descriptive analysis was used to analyze the relationship between the FFs' age and body mass index with the FFs' thorax movement during the lifting task with PPE and without PPE. Sixty-three percent of FFs reported lower back pain during work, based on the musculoskeletal pain questionnaire. The biomechanics analysis of thorax angle deviation and angular acceleration has shown that using FFs PPE significantly causes restricted movement and limited mobility for the FFs. As regards human factors, the FFs' age influences the angle deviation while wearing PPE and FFs' BMI influences the angular acceleration without wearing PPE during the lifting activity.
Collapse
Affiliation(s)
| | - Mohd Hafiidz Jaafar
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
| | | | - Nur Zaidi Azraai
- School of the Arts, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
| | - Norhaniza Amil
- School of Industrial Technology, Universiti Sains Malaysia (USM), Penang 11800, Malaysia
| | - Remy Md Zein
- National Institute of Occupational Safety and Health (NIOSH), Bangi 43650, Malaysia
| |
Collapse
|
4
|
Ergonomics Risk Assessment for Manual Material Handling of Warehouse Activities Involving High Shelf and Low Shelf Binning Processes: Application of Marker-Based Motion Capture. SUSTAINABILITY 2022. [DOI: 10.3390/su14105767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lower back pain is a musculoskeletal disorder that is commonly reported among warehouse workers due to the nature of the work environment and manual handling activities. The objective of this study was to assess the ergonomic risks among warehouse workers carrying out high shelf (HS) and low shelf (LS) binning processes. A questionnaire was used to determine the prevalence of musculoskeletal symptoms, while a marker-based motion capture (MoCap) system worksheet was used to record the participants’ motion and determine the action risk level. A total of 33% of the participants reported lower back pain in the past seven days, based on the Cornell Musculoskeletal Discomfort Questionnaire (CMDQ) results. Analysis of the body velocities showed that the HS binning process had four major velocity peaks, defined as the initial, lowering, lifting, and final phases. In comparison, the LS binning process had two major peaks defined, the crouching and rising phases. There were significant differences between the mean velocities of the workers for the HS binning process, indicating that the workers have different movement patterns with varying velocities.
Collapse
|
5
|
The Effect of the Degree of Freedom and Weight of the Hand Exoskeleton on Joint Mobility Function. ROBOTICS 2022. [DOI: 10.3390/robotics11020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims to investigate the effects of the degree of freedom (DOF) and weight of the hand exoskeleton (HE) on hand joint mobility function (ease of movement, movement range) in fine hand use activities. A three-digit passive HE prototype was built to fit each of the 12 participants. Two DOF setups (three DOF, two DOF), two digits’ weight levels (70 g, 140 g), and barehand conditions were tested. A productivity task (performed with Standardized-Nine Hole Peg Test) and motion tasks, both performing the tip pinch and tripod pinch, were conducted to measure the task completion time and the range of motion (ROM) of the digit joints, respectively, using a motion capture system. The perceived ease rating was also measured. The results showed that DOF reduction and weight addition caused a significant task completion time increase and rating drop (p < 0.05). Meanwhile, the DOF reduction increased the ROM reduction of the proximal interphalangeal joints; however, the weight addition caused a correction of the ROM reduction of several joints (p < 0.05) at the tripod pinch. In conclusion, wearing an HE reduces hand joint mobility, especially in lower DOF. However, a certain weight addition may improve joint mobility in terms of the fingers’ movement range.
Collapse
|
6
|
Implementation of Kinetic and Kinematic Variables in Ergonomic Risk Assessment Using Motion Capture Simulation: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168342. [PMID: 34444087 PMCID: PMC8394735 DOI: 10.3390/ijerph18168342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
Work-related musculoskeletal disorders (WMSDs) are among the most common disorders in any work sector and industry. Ergonomic risk assessment can reduce the risk of WMSDs. Motion capture that can provide accurate and real-time quantitative data has been widely used as a tool for ergonomic risk assessment. However, most ergonomic risk assessments that use motion capture still depend on the traditional ergonomic risk assessment method, focusing on qualitative data. Therefore, this article aims to provide a view on the ergonomic risk assessment and apply current motion capture technology to understand classical mechanics of physics that include velocity, acceleration, force, and momentum in ergonomic risk assessment. This review suggests that using motion capture technologies with kinetic and kinematic variables, such as velocity, acceleration, and force, can help avoid inconsistency and develop more reliable results in ergonomic risk assessment. Most studies related to the physical measurement conducted with motion capture prefer to use non-optical motion capture because it is a low-cost system and simple experimental setup. However, the present review reveals that optical motion capture can provide more accurate data.
Collapse
|
7
|
Ghasemi MH, Anbarian M, Esmaeili H. Immediate effects of using insoles with various wedges on activation and co-contraction indices of selected trunk muscles during load lifting. APPLIED ERGONOMICS 2020; 88:103195. [PMID: 32678767 DOI: 10.1016/j.apergo.2020.103195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Trunk muscles play an important role during load lifting and contract to control trunk stability. The aim of present study was to investigate immediate effects of using various insole wedges on activation and co-contraction indices of selected trunk muscles during load lifting. Thirty able-bodied males completed load lifting task using nine various insole wedges. The results showed these significant differences: for normalized mean amplitude of RA muscle between posterior and anterior-medial wedges and for QL muscle between posterior and lateral wedges, for normalized peak amplitude of RA muscle between posterior and anterior-medial wedges, for median frequency of LES muscle between anterior-medial and anterior-lateral wedges, and for co-contraction of RA/TES, RA/LES and RA/MU between posterior and anterior-medial wedges (P = 0.001). These findings should be considered during designation of shoe or insole for work environments. Future studies need to assess other biomechanical aspects of using various insole wedges during work-related tasks.
Collapse
Affiliation(s)
- Mohammad Hosein Ghasemi
- Department of Sports Biomechanics, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Mehrdad Anbarian
- Department of Sports Biomechanics, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Hamed Esmaeili
- Department of Sport Injuries and Corrective Exercises, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
8
|
Zhang Y, Ke J, Wu X, Luo X. A Biomechanical Waist Comfort Model for Manual Material Lifting. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5948. [PMID: 32824371 PMCID: PMC7459927 DOI: 10.3390/ijerph17165948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
Low back pain (LBP) is a common disorder that affects the working population worldwide. LBP causes more disability than any other conditions all around the world. Most existing studies focus on the occupational physical factors in association with LBP, while few focus on individual factors, especially the lack of quantitative calculation of waist comfort in biomechanics. Based on the physical statistics of Chinese men, this research used human posture analysis (HPA) to establish the waist strength formula and analyzed the waist strength during a manual material handling. It also explored the influence of weight and height of lifting objects on the L5-S1 spinal load. On this basis, a waist comfort model was proposed in combination with the recommended weight limit (RWL) recommended by NIOSH, and the parameter selection and waist comfort value were verified by Jack simulation software. The results show that pulling force of the Erector Spinae of the waist is closely related to the weight and lifting height of the object. Parameter verification and Jack software simulation results show that the force of L5-S1 is less than 3400 N, which proves that the waist force under this posture is acceptable. The developed waist comfort model can be applied to evaluate work risk, to adjust working intensity and powered exoskeleton design, aiming to decrease the prevalence of LBP.
Collapse
Affiliation(s)
- Yongbao Zhang
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
| | - Jinjing Ke
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China; (J.K.); (X.L.)
| | - Xiang Wu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China;
| | - Xiaowei Luo
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China; (J.K.); (X.L.)
| |
Collapse
|
9
|
Martinez R, Assila N, Goubault E, Begon M. Sex differences in upper limb musculoskeletal biomechanics during a lifting task. APPLIED ERGONOMICS 2020; 86:103106. [PMID: 32342895 DOI: 10.1016/j.apergo.2020.103106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Women experience higher prevalence of work-related upper limb musculoskeletal disorders compared to men. Previous studies have investigated the biological, kinematic and electromyographic sex-related differences during a lifting task but the actual differences in musculoskeletal loads remain unknown. We investigated the sex differences in three musculoskeletal indicators: the sum of muscle activations, the sum of muscle forces and the relative time spent beyond a shear-compression dislocation ratio. A musculoskeletal model was scaled on 20 women and 20 men lifting a 6 or 12kg box from hip to eye level. Women generated more muscle forces and activations than men, regardless of the lifted mass. Those differences occurred when the box was above shoulder level. In addition, women might spend more time beyond a shear-compression dislocation ratio. Our work suggests higher musculoskeletal loads among women compared to men during a lifting task, which could be the result of poor technique and strength difference.
Collapse
Affiliation(s)
- Romain Martinez
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada.
| | - Najoua Assila
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada
| | - Etienne Goubault
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada
| | - Mickaël Begon
- School of Kinesiology and Exercise Science, Faculty of Medicine, University of Montreal, Canada
| |
Collapse
|
10
|
Bouffard J, Martinez R, Plamondon A, Côté JN, Begon M. Sex differences in glenohumeral muscle activation and coactivation during a box lifting task. ERGONOMICS 2019; 62:1327-1338. [PMID: 31282824 DOI: 10.1080/00140139.2019.1640396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Manual material handling is associated with shoulder musculoskeletal disorders, especially for women. Sex differences in glenohumeral muscle activity may contribute to women's higher injury risk by affecting shoulder load and stability. We assessed the effects of sex (25 women vs 26 men) and lifting load (6 kg vs 12 kg) on muscle activation during box lifting from hip to eye level. Surface and intramuscular electromyography were recorded from 10 glenohumeral muscles. Most muscles were more activated for the heavier box and for women. These effects were larger for 'prime movers' than for stabilisers and antagonists. Despite their apparently heterogeneous effects on muscle activity, sex and mass did not affect Muscle Focus, a metric of coactivation. This may be partly related to the limited sensitivity of the Muscle Focus. Nevertheless, sex differences in strength, more than in coactivation patterns, may contribute to the sex imbalance in the prevalence of musculoskeletal disorders. Practitioner summary: We studied sex differences in glenohumeral muscle activity in a lifting task to eye level. Women lifting a 6-kg box activated their muscles similarly to men lifting a 12-kg box, i.e. up to 48% of their maximum capacity. Interventions minimising shoulder load should be implemented, especially for women. Abbreviations: BB: biceps brachii; DeltA: anterior deltoid; DeltL: lateral deltoid; DeltP: posterior deltoid; DoF: degrees of freedom; ED: effect duration; EMG: electromyography; ES: effect size; Infra: infraspinatus; Lat: latissimus dorsi; MF: muscle focus; MMH: manual material handling; MVA: maximal voluntary activation; Pect: pectoralis major; Subscap: subscapularis; Supra: supraspinatus; TB: triceps brachii.
Collapse
Affiliation(s)
- Jason Bouffard
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal , Laval , Canada
- Kinesiology and Physical Education, McGill University , Montréal , Canada
| | - Romain Martinez
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal , Laval , Canada
| | - André Plamondon
- Institut de Recherche Robert Sauvé en Santé et Sécurité du Travail (IRSST) , Montréal , Canada
| | - Julie N Côté
- Kinesiology and Physical Education, McGill University , Montréal , Canada
| | - Mickaël Begon
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal , Laval , Canada
| |
Collapse
|
11
|
Blache Y, Begon M, Michaud B, Desmoulins L, Allard P, Dal Maso F. Muscle function in glenohumeral joint stability during lifting task. PLoS One 2017; 12:e0189406. [PMID: 29244838 PMCID: PMC5731701 DOI: 10.1371/journal.pone.0189406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 11/26/2017] [Indexed: 11/23/2022] Open
Abstract
Ensuring glenohumeral stability during repetitive lifting tasks is a key factor to reduce the risk of shoulder injuries. Nevertheless, the literature reveals some lack concerning the assessment of the muscles that ensure glenohumeral stability during specific lifting tasks. Therefore, the purpose of this study was to assess the stabilization function of shoulder muscles during a lifting task. Kinematics and muscle electromyograms (n = 9) were recorded from 13 healthy adults during a bi-manual lifting task performed from the hip to the shoulder level. A generic upper-limb OpenSim model was implemented to simulate glenohumeral stability and instability by performing static optimizations with and without glenohumeral stability constraints. This procedure enabled to compute the level of shoulder muscle activity and forces in the two conditions. Without the stability constraint, the simulated movement was unstable during 74%±16% of the time. The force of the supraspinatus was significantly increased of 107% (p<0.002) when the glenohumeral stability constraint was implemented. The increased supraspinatus force led to greater compressive force (p<0.001) and smaller shear force (p<0.001), which contributed to improved glenohumeral stability. It was concluded that the supraspinatus may be the main contributor to glenohumeral stability during lifting task.
Collapse
Affiliation(s)
- Yoann Blache
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Lyon 1, Université de Lyon, Lyon, France
- * E-mail:
| | - Mickaël Begon
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal, Québec, Canada
| | - Benjamin Michaud
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal, Québec, Canada
| | - Landry Desmoulins
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal, Québec, Canada
| | - Paul Allard
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal, Québec, Canada
| | - Fabien Dal Maso
- Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie, Université de Montréal, Québec, Canada
| |
Collapse
|
12
|
LIN CJ, CHENG CF. Lifting speed preferences and their effects on the maximal lifting capacity. INDUSTRIAL HEALTH 2017; 55:27-34. [PMID: 27383532 PMCID: PMC5285311 DOI: 10.2486/indhealth.2016-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
The objectives of this study were to evaluate how lifting capacity and subjective preferences are affected by different lifting speeds. The maximum lifting capacity of lift was determined with three independent variables, lifting speed, lifting technique, and lifting height. Questionnaires were evaluated after the experiment by the participants for the lifting speed preferences. This study found that the lifting speed was a significant factor in the lifting capacity (p<0.001); and the lifting height (p<0.001) and the interaction of lifting speed and lifting height (p=0.005) affected the lifting capacity significantly. The maximal lifting capacity was achieved around the optimal speed that was neither too fast nor too slow. Moreover, the participants' preferred lifting speeds were consistently close to the optimal lifting speed. The results showed that the common lifting practice guideline to lift slowly might make the worker unable to generate a large lifting capacity.
Collapse
Affiliation(s)
- Chiuhsiang Joe LIN
- Department of Industrial Management, National Taiwan University of Science and Technology, Taiwan
| | - Chih-Feng CHENG
- Department of Industrial Management, National Taiwan University of Science and Technology, Taiwan
| |
Collapse
|
13
|
Superficial shoulder muscle co-activations during lifting tasks: Influence of lifting height, weight and phase. J Electromyogr Kinesiol 2015; 25:355-62. [DOI: 10.1016/j.jelekin.2014.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/22/2014] [Accepted: 11/12/2014] [Indexed: 11/21/2022] Open
|
14
|
Elsayed W, Farrag A, El-Sayyad M, Marras W. Changes in muscular activity and lumbosacral kinematics in response to handling objects of unknown mass magnitude. Hum Mov Sci 2015; 40:315-25. [DOI: 10.1016/j.humov.2015.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/28/2022]
|
15
|
Blache Y, Desmoulins L, Allard P, Plamondon A, Begon M. Effects of height and load weight on shoulder muscle work during overhead lifting task. ERGONOMICS 2014; 58:748-761. [PMID: 25403553 DOI: 10.1080/00140139.2014.980336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Few musculoskeletal models are available to assess shoulder deeper muscle demand during overhead lifting tasks. Our objective was to implement a musculoskeletal model to assess the effect of lifting height and load on shoulder muscle work. A musculoskeletal model scaled from 15 male subjects was used to calculate shoulder muscle work during six lifting tasks. Boxes containing three different loads (6, 12 and 18 kg) were lifted by the subjects from the waist to shoulder or eye level. After optimisation of the maximal isometric force of the model's muscles, the bio-fidelity of the model was improved by 19%. The latter was able to reproduce the subjects' lifting movements. Mechanical work of the rotator cuff muscles, upper trapezius and anterior deltoid was increased with lifting load and height augmentation. In conclusion, the use of a musculoskeletal model validated by electromyography enabled to evaluate the muscle demand of deep muscles during lifting tasks.
Collapse
Affiliation(s)
- Y Blache
- a Laboratoire de Simulation et Modélisation du Mouvement, Département de Kinésiologie , Université de Montréal , Québec , Canada
| | | | | | | | | |
Collapse
|
16
|
Song J, Qu X. Effects of age and its interaction with task parameters on lifting biomechanics. ERGONOMICS 2014; 57:653-668. [PMID: 24655323 DOI: 10.1080/00140139.2014.897376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study investigated the age-related differences in lifting biomechanics. Eleven younger and 12 older participants were instructed to perform symmetric lifting tasks defined by different combinations of destination heights and load magnitudes. Lifting biomechanics was assessed. It was found that the trunk flexion in the starting posture was 32% lower and the peak trunk extension velocity was 46% lower in older participants compared with those in younger ones, indicating that older adults tended to use safer lifting strategies than did younger adults. Based on these findings, we recommend that physical exercise programmes may be a more effective ergonomic intervention for reducing the risks of low back pain (LBP) in lifting among older workers, compared with instructions of safe lifting strategies. As for younger workers, instructions of safe lifting strategies would be effective in LBP risk reduction.
Collapse
Affiliation(s)
- Jiahong Song
- a School of Mechanical and Aerospace Engineering , Nanyang Technological University , Singapore
| | | |
Collapse
|
17
|
Sukadarin EH, Md Deros B, Ghani JA, Ismail AR, Mokhtar MM, Mohamad D. Investigation of Ergonomics Risk Factors for Musculoskeletal Disorders among Oil Palm Workers Using Quick Exposure Check (QEC). ADVANCED ENGINEERING FORUM 2013; 10:103-109. [DOI: 10.4028/www.scientific.net/aef.10.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Oil palm workers perform daily activities that exposed themselves to various ergonomics risk factors. To harvest oil palm fruits from tall trees, specific technique is required. To quantify the ergonomics risks factors, postural analysis was conducted using Quick Exposure Check (QEC) system. It was found oil palm workers were exposed to many postural problems while performing harvesting and collecting fresh fruit bunch (FFB) activities. However, to quantify the actual load, many limitations of the QEC have been revealed such the missing of legs assessment, the crude analysis for arm and shoulder, no pushing and pulling assessment and the biased may be existed due to the workers perception on the ergonomics factors. Thus, it can be concluded that QEC system was not suitable for conducting postural analysis during harvesting in oil palm plantation especially in tall trees due to the above limitations.
Collapse
|
18
|
Yang HS, Kwon OY, Lee YS. Changes in the Thickness of Trunk Stabilizer Muscles According to Increased Lifting Loads in Stoop Lifting. J Phys Ther Sci 2013. [DOI: 10.1589/jpts.25.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Oh-Yun Kwon
- Department of Physical Therapy, College of Health Science, Yonsei University
| | | |
Collapse
|