Postural differences in shoulder dynamics during pushing and pulling.
J Biomech 2019;
85:67-73. [PMID:
30670329 DOI:
10.1016/j.jbiomech.2019.01.005]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 11/22/2022]
Abstract
Assessments of shoulder dynamics (e.g. the inertial, viscous, and stiffness properties of the joint) can provide important insights into the stability of the joint at rest and during volitional contraction. The purpose of this study was to investigate how arm posture influences shoulder dynamics while generating pushing or pulling torques in the horizontal plane. Sixteen healthy participants were examined in seven postures encompassing a large workspace of the shoulder. At each posture, the participant's shoulder was rapidly perturbed while measuring the resultant change in shoulder torque about the glenohumeral axis. Participants were examined both at rest and while producing horizontal flexion and extension torques scaled to 15% of a maximum voluntary contraction. Shoulder stiffness, viscosity, and damping ratio were estimated using impedance-based matching, and changes in these outcome measures with torque level, elevation angle, and plane of elevation angle were explored with a linear mixed effects model. Shoulder stiffness was found to decrease with increasing elevation angles (p < 0.001) without subsequent changes in viscosity, leading to a greater damping ratios at higher elevation angles (p < 0.001). Shoulder stiffness, viscosity, and damping ratio (all p < 0.05) were all found to significantly increase as the plane of elevation of the arm was increased. The relationship between the viscosity, stiffness and the damping ratio of the shoulder is one that the central nervous system must regulate in order to maintain stability, protect against injury, and control the shoulder joint as the inertial and muscle contributions change across different arm postures.
Collapse