1
|
Yermolenko SV, Nedzvetsky VS, Gasso VY, Spirina VA, Petrushevskyi VB, Kyrychenko VV. Low doses of imidacloprid induce neurotoxic effects in adult marsh frogs: GFAP, NfL, and angiostatin as biomarkers. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Imidacloprid is one of the most widely used insecticides in the world. The neurotoxicity of imidacloprid in adult amphibians has not been studied thoroughly. We investigated the expression of glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and angiostatin in the amphibian brain to identify valid biomarkers of low dose imidacloprid exposure. For the experiment, 30 individuals of the marsh frog Pelophylax ridibundus were selected. The amphibians were divided into five groups. The duration of the experiment was 7 and 21 days. The exposure concentrations were 10 and 100 µg/L. The results of the study revealed a decrease in the expression of GFAP after 7 days in the exposure groups of 10 and 100 μg/L. An increase in the level of NfL was observed in the group exposed to 10 μg/L after 21 days of the experiment. The angiostatin level was increased after 7 days at 10 µg/L and after 21 days at 100 µg/L. The data obtained indicate that low concentrations of imidacloprid can cause neurotoxic effects in the brain of P. ridibundus. Such effects can have a significant impact on amphibian populations. According to the results of the study of the expression level of GFAP, NfL and angiostatin, it can be stated that imidacloprid has a neurotoxic effect on adult marsh frogs. The studied indicators can be promising biomarkers of environmental pollution by neonicotinoids.
Collapse
|
2
|
Zarezadehmehrizi A, Hong J, Lee J, Rajabi H, Gharakhanlu R, Naghdi N, Azimi M, Park Y. Exercise training ameliorates cognitive dysfunction in amyloid beta-injected rat model: possible mechanisms of Angiostatin/VEGF signaling. Metab Brain Dis 2021; 36:2263-2271. [PMID: 34003412 DOI: 10.1007/s11011-021-00751-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/22/2022]
Abstract
Vascular endothelial growth factor (VEGF) regulates angio/neurogenesis and also tightly links to the pathogenesis of Alzheimer's disease (AD). Although exercise has a beneficial effect on neurovascular function and cognitive function, the direct effect of exercise on VEGF-related signaling and cognitive deficit in AD is incompletely understood. Therefore, the purpose of this study was to investigate the protective effect of exercise on angiostatin/VEGF cascade and cognitive function in AD model rats. Wistar male rats were randomly divided into five groups: control (CON), injection of DMSO (Sham-CON), CON-exercise (sham-EX), intrahippocampal injection of Aβ (Aβ), and Aβ-exercise (Aβ-EX). Rats in EX groups underwent treadmill exercise for 4 weeks, then the cognitive function was measured by the Morris Water Maze (MWM) test. mRNA levels of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and angiostatin were determined in hippocampus by RT-PCR. We found that spatial learning and memory were impaired in Aβ-injected rats, but exercise training improved it. Moreover, exercise training increased the reduced mRNA expression level of VEGF signaling, including HIF1α, VEGF, and VEGFR2 in the hippocampus from Aβ-injected rats. Also, the mRNA expression level of angiostatin was elevated in the hippocampus from Aβ-injected rats, and exercise training abrogated its expression. Our findings suggest that exercise training improves cognitive function in Aβ-injected rats, possibly through enhancing VEGF signaling and reducing angiostatin.
Collapse
Affiliation(s)
- Aliasghar Zarezadehmehrizi
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
| | - Junyoung Hong
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Jonghae Lee
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Hamid Rajabi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
| | - Reza Gharakhanlu
- Department of Physical Education and Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Naser Naghdi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran 13164, Tehran, Iran
| | - Mohammad Azimi
- Department of Physical Education and Sport Science, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Deng D, Qu Y, Sun L, Jia L, Bu J, Ye M, Chen Z, Geng Y, Zhou S, Fang B. Fuyuan Xingnao Decoction Promotes Angiogenesis Through the Rab1/AT1R Pathway in Diabetes Mellitus Complicated With Cerebral Infarction. Front Pharmacol 2021; 12:616165. [PMID: 33679398 PMCID: PMC7925884 DOI: 10.3389/fphar.2021.616165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Fuyuan Xingnao decoction (FYXN), a traditional Chinese formula comprised of seven herbs, has been utilized to treat diabetes mellitus complicated with cerebral infarction (DMCI) for years. Yet, its protective and regulatory mechanism is poorly understood. The aim of the study is to investigate the effects of FYXN on DMCI in vitro and in vivo, as well as its mechanism in angiogenesis. For in vivo experiments, FYXN was administered to DMCI rats with streptozotocin (STZ) injection-induced diabetes. Then middle cerebral artery occlusion (MCAO) was conducted and the cerebral cortex sections of the rats were obtained. The ultrastructure of cerebral microvessels and new vessel density of ischemic penumbra were evaluated by the transmission electron microscopy (TEM) assay and immunohistochemistry, respectively. Protein and mRNA expression levels of Rab1/AT1R in cortex were assayed by Western blotting and real-time fluorescence quantitative real-time polymerase chain reaction (RT-qPCR). In vitro, FYXN serum was produced in rats on the fourth day 2 h after the last FYXN administration. Green fluorescence was observed after transfection with lentivirus packaged Rab1-WT or siRNA for 24 h. The activity of brain microvascular endothelial cells (BMECs) treated with sera from these rats was tested by MTT assay and Transwell assays, respectively. The expression of AT1R on the cell membrane and endoplasmic reticulum of BMECs was evaluated by immunofluorescence staining. Protein expression levels of signaling molecules in the Rab1/AT1R pathways were also detected. Results showed that in vivo, FYXN treatment significantly intensified CD31 staining in the cortical areas and enhanced the mRNA and protein levels of AT1R, Ang II, Rab1a, Rab1b and VEGF expression in ischemic cerebral cortex tissues. In vitro, the expression levels of AT1R, Ang II, Rab1a, Rab1b and VEGF in the cerebral infarction model group were significantly higher than those in the control group, with further increases after administration of FYXN drug serum. FYXN promoted the proliferation and migration of BMECs by activating the Rab1/AT1R signaling pathway. In conclusion, FYXN exerts a protective effect against DMCI by promoting angiogenesis via the Rab1/AT1R pathway, which provides strong evidence for the therapeutic effect of FYXN on DMCI.
Collapse
Affiliation(s)
- Dong Deng
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao Qu
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Sun
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liyang Jia
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhong Bu
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Internal Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Miaoqing Ye
- Department of Liver Disease, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Zhenyi Chen
- Department of Cardiology, the Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yun Geng
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Zhou
- Department of Acupuncture and Massage College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bangjiang Fang
- Department of Emergency Medicine, LongHua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Zhou YH, Han QF, Gao L, Sun Y, Tang ZW, Wang M, Wang W, Yao HC. HMGB1 Protects the Heart Against Ischemia-Reperfusion Injury via PI3K/AkT Pathway-Mediated Upregulation of VEGF Expression. Front Physiol 2020; 10:1595. [PMID: 32063860 PMCID: PMC7000523 DOI: 10.3389/fphys.2019.01595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Delivery of exogenous high mobility group box 1 (HMGB1) may exert a beneficial effect on myocardial ischemia-reperfusion (I/R) injury. Since the expression of vascular endothelial growth factor (VEGF) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) in the myocardium mediates the cardioprotective function of basic fibroblast growth factor, we hypothesized that VEGF and the PI3K/Akt signaling pathway also mediate the protective effects of intravenously delivered HMGB1. Thus, the objective of the present study was to analyze the impact of intravenous administration of HMGB1 on the myocardial expression of VEGF, myocardial fibrosis, and cardiac function in rats subjected to acute myocardial I/R. The ischemia was induced by ligation of the left anterior descending coronary artery for 30 min and was followed by 3 h of reperfusion. Myocardial malondialdehyde content, infarct size, and collagen volume fraction decreased, while the activity of superoxide dismutase was increased, the expression of VEGF and p-Akt was upregulated, and cardiac function was improved in the HMGB1-treated group when compared with rats subjected to I/R only (all P < 0.05). However, these effects of HMGB1 were abolished by LY294002. The obtained results demonstrate that the cardioprotective effects of intravenous administration of HMGB1 prior to I/R may be mediated by upregulation of myocardial expression of VEGF, which may activate the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yan-Hong Zhou
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Qian-Feng Han
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Shandong University, Liaocheng, China
| | - Ying Sun
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Zhan-Wei Tang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Meng Wang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China.,Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wei Wang
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital Affiliated to Shandong University and Clinical School of Shandong First Medical University, Liaocheng, China
| |
Collapse
|
5
|
Wang Q, Wei J, Shi Y. Platelet microvesicles promote the recovery of neurological function in mouse model of cerebral infarction by inducing angiogenesis. Biochem Biophys Res Commun 2019; 513:997-1004. [PMID: 31005253 DOI: 10.1016/j.bbrc.2019.04.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The aim of this study is to investigate the effect of PMVs on mice with ischemic cerebral infarction and its mechanism. Male C57BL/6 mice were selected, and the right focal cortical infarction model was established via cauterization under a microscope and randomly divided into sham operation (Sham) group, normal saline control (Saline) group and platelet microvesicles intervention (PMVs) group. At 1 h after modeling, 5 μL of PMVs (50 μg/mL) or normal saline was injected into the lateral ventricle. The neurological function of mice in each group was evaluated at 1, 3, 7, 14 and 28 d after modeling. After 28 d, the cerebral infarction area was detected via 2,3,5-triphenyltetrazolium chloride (TTC) staining. At 7 and 28 d after modeling, the blood vessel density, proliferation rate of new vessels and encapsulation rate of pericytes were detected via immunofluorescence staining. Moreover, the changes in cerebral cortical blood flow at the infarction side were detected before modeling and at 7 and 28 d after modeling, respectively. Finally, the expressions of proangiogenic factors vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1) and N-Cadherin were detected via Western blotting at 3, 7 and 28 d after modeling. PMVs could promote the improvement of neurological function and significantly reduce the cerebral infarction volume in mice with cerebral infarction. PMVs promoted proliferation of new vessels and increased blood vessel density at the infarction edge in mice with cerebral infarction. PMVs could increase the encapsulation rate of pericytes at the infarction edge and improve the permeability of blood-brain barrier in mice with cerebral infarction. PMVs could increase the cerebral cortical blood flow perfusion in mice with cerebral infarction. PMVs could increase proangiogenic factors in brain tissues in mice with cerebral infarction. PMVs could significantly improve the recovery of neurological function in mice with cerebral infarction, which is closely related to the ability of PMVs to promote angiogenesis at the infarction edge. The possible mechanism is that PMVs facilitate angiogenesis after cerebral infarction through promoting the expressions of VEGF, Ang-1 and N-Cadherin. More importantly, the new vessels promoted by PMVs have complete structure and perfect function, and can improve the cerebral blood flow perfusion at the infarction side.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, The First Hospital of Xi'an, Xi'an, China
| | - Jiachen Wei
- Department of Endocrinology, The First Hospital of Xi'an, Xi'an, China
| | - Yaling Shi
- Department of Neurology, The First Hospital of Xi'an, Xi'an, China.
| |
Collapse
|