1
|
Deng Y, Yu L, Lai W, Xiao S, Zhang W. Knocking down macrophages Caspase-6 through HMGB1 coordinates macrophage trophoblast crosstalk to suppress ferroptosis and alleviate preeclampsia. Int Immunopharmacol 2024; 140:112859. [PMID: 39121610 DOI: 10.1016/j.intimp.2024.112859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVE Caspase-6 is an important regulatory factor in innate immunity, inflammasome activation, and host defense, but its role in preeclampsia (PE) is unknown. This study aims to investigate the mechanism of Caspase-6 in the interaction between PE rats and macrophage-trophoblast cells, in order to provide a new theoretical basis for the treatment of PE. METHODS Co-cultures of THP-1 cells and HTR8/SVneo cells were employed to investigate the HMGB1 signaling in macrophages (transfection with si-Caspase-6) and HTR8/SVneo cells. The PE rat model was constructed by using the reduced uterine perfusion pressure (RUPP) surgery to explore the therapeutic effects of bone marrow-derived macrophages (BMDM) transfected with si-Caspase-6 in PE rats. ELISA, Western blot, immunofluorescence, etc., were employed to characterize the expression of ferroptosis-related markers. RESULTS Caspase-6 expression was significantly increased in CD14+ macrophages in the placental tissue of PE rats. Overexpression of Caspase-6 in THP-1 cells induced ferroptosis of HTR8/SVneo cells, but this process was blocked by anti-HMGB1 neutralizing antibody. Knockdown of Caspase-6 in macrophages could alleviate ferroptosis of HTR8/SVneo cells and restore its basic characteristics. Knockdown of Caspase-6 in BMDM downregulated ferroptosis in placental tissue of PE rats through HMGB1, thereby improving the disease phenotype in rats. CONCLUSION Knocking down Caspase-6 in BMDM regulated the crosstalk between macrophages and HTR8/SVneo cells through HMGB1, inhibiting HTR8/SVneo cell ferroptosis, thereby improving adverse pregnancy outcomes of PE.
Collapse
Affiliation(s)
- Yali Deng
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha 410011, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha 410011, China.
| | - Weisi Lai
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha 410011, China
| | - Songyuan Xiao
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha 410011, China
| | - Wen Zhang
- Department of Obstetrics and Gynecology, Second XiangYa Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
2
|
Sola IM, Karin-Kujundzic V, Paic F, Lijovic L, Glibo M, Serman N, Duic T, Skrtic A, Kuna K, Vranic S, Serman L. WNT5A, β‑catenin and SUFU expression patterns, and the significance of microRNA deregulation in placentas with intrauterine growth restriction. Mol Med Rep 2022; 27:28. [PMID: 36524356 PMCID: PMC9813565 DOI: 10.3892/mmr.2022.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/05/2022] [Indexed: 12/15/2022] Open
Abstract
Placental insufficiency is a common cause of intrauterine growth restriction (IUGR). It affects ~10% of pregnancies and increases fetal and neonatal morbidity and mortality. Although Wnt and Hh pathways are crucial for embryonic development and placentation, their role in the pathology of IUGR is still not sufficiently explored. The present study analyzed the expression of positive regulators of the Wnt pathway, WNT5A and β‑catenin, and the expression of the Hh pathway negative regulator suppressor of fused (SUFU). Immunohistochemical and reverse transcription‑quantitative PCR (RT‑qPCR) assays were performed on 34 IUGR and 18 placental tissue samples from physiologic singleton‑term pregnancies. Epigenetic mechanisms of SUFU gene regulation were also investigated by methylation‑specific PCR analysis of its promoter and RT‑qPCR analysis of miR‑214‑3p and miR‑378a‑5p expression. WNT5A protein expression was higher in endothelial cells of placental villi from IUGR compared with control tissues. That was also the case for β‑catenin protein expression in trophoblasts and endothelial cells and SUFU protein expression in trophoblasts from IUGR placentas. The SUFU gene promoter remained unmethylated in all tissue samples, while miR‑214‑3p and miR‑378a‑5p were downregulated in IUGR. The present results suggested altered Wnt and Hh signaling in IUGR. DNA methylation did not appear to be a mechanism of SUFU regulation in the pathogenesis of IUGR, but its expression could be regulated by miRNA targeting.
Collapse
Affiliation(s)
- Ida Marija Sola
- Department of Obstetrics and Gynecology, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia,Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia,Correspondence to: Dr Valentina Karin-Kujundzic, Department of Biology, School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia, E-mail:
| | - Frane Paic
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia
| | - Lada Lijovic
- Department of Anesthesiology and Critical Care, General Hospital Fra Mihovil Sučić, 80101 Livno, Bosnia and Herzegovina
| | - Mislav Glibo
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia
| | - Nikola Serman
- Zagreb Emergency Medicine Service, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tihana Duic
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia,Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia,Department of Pathology, University Hospital Merkur, 10000 Zagreb, Croatia
| | - Krunoslav Kuna
- Department of Obstetrics and Gynecology, University Hospital Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, University of Zagreb, 10000 Zagreb, Croatia,Centre of Excellence in Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Screening Candidate Genes Regulating Placental Development from Trophoblast Transcriptome at Early Pregnancy in Dazu Black Goats ( Capra hircus). Animals (Basel) 2021; 11:ani11072132. [PMID: 34359260 PMCID: PMC8300351 DOI: 10.3390/ani11072132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The trophoblast is an original placental tissue whose normal proliferation, differentiation, migration, adhesion, and angiopoiesis are essential for placenta formation and fetal survival during early pregnancy. However, the key genes and molecular mechanisms involved in placenta development in goats are unknown. Herein, the morphology and histological structures of trophoblast tissues from day 20 to 30 of pregnancy were determined. RNA-sequencing was used to screen potential functional genes in common highly expressed and differentially expressed genes. RAP1 signaling pathway was used as the contact center and coordinated with other pathways to regulate placenta development. This study could provide insights into the molecular mechanisms underlying ruminant placentation. Abstract This study explored the trophoblast transcriptome to understand potential functional genes involved in early placental development in goats and their enriched signaling pathways. Trophoblast samples were collected from nine Dazu Black goats on days 20, 25, and 30 of pregnancy (D20, D25, and D30). As the pregnancy progressed, the morphology and histological structures showed significant growth, adhesion, and angiogenesis. A total of 23,253 commonly expressed genes (CEGs) and 4439 differently expressed genes (DEGs) were detected by RNA sequencing. The common highly expressed genes (ChEGs) (the top 100 CEGs) with the highest FPKM percentage (29.9%) of all CEGs were annotated to the ribosome pathway and maintain pregnancy. DEGs were abundant in D30 vs. D20 (3715 DEGs). Besides, the DEGs were associated with the inhibition of oxidative phosphorylation and activation of PI3K-Akt, focal adhesion, ECM–receptor interaction, Rap1, and CAM signaling pathways. The RAP1 may be a central pathway since it coordinates with others to regulate the cell proliferation, invasion, migration, and fusion of trophoblasts. qRT-PCR and Western blot analysis confirmed the transcriptional expression in IGF1, VEGFC, RAPGEF3, PIK3CA, AKT3, ITGB3, ITGA11, SPP1, NOS1, and ATP6V0B genes and protein levels in VEGF, RAPGEF3, and Akt. This is the first study of transcriptome profiling in goat placenta and provides diverse genetic resources for further research on placenta development.
Collapse
|
4
|
Wang SJ, Chao D, Wei W, Nan G, Li JY, Liu FL, Li L, Jiang JL, Cui HY, Chen ZN. CD147 promotes collective invasion through cathepsin B in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:145. [PMID: 32727598 PMCID: PMC7391525 DOI: 10.1186/s13046-020-01647-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Background Mounting evidence suggests that solid tumors display the features of collective invasion, however, the molecular mechanisms are far from clear. This study aims to verify the role and the underlying mechanisms of CD147 in collective invasion in hepatocellular carcinoma. Methods Immunostaining was used to analyze human hepatocellular carcinoma specimens and three-dimensional cultures. Three-dimensional invasion model was established to mimic in vivo invasion. RNA-sequencing was used to identify downstream effectors. Results Human hepatocellular carcinoma underwent collective invasion and CD147 was observed to be upregulated at the invasive front of tumor cell groups. CD147 was demonstrated to promote collective invasion using the modified three-dimensional invasion model, which recapitulated the main features of collective invasion. Through transcriptome analysis and enzyme activity assay, we found that CD147 enhanced cathepsin B expression and activity. Upregulated cathepsin B in hepatocellular carcinoma cells facilitated migration and invasion, which mediated CD147-induced invasive phenotype in hepatocellular carcinoma. In terms of mechanism, we found that CD147 promoted cathepsin B transcription by activating β-catenin signaling as a result of reduced GSK-3β expression. Furthermore, we found that elevated expression of CD147 as well as cathepsin B were correlated with poor prognosis in patients with hepatocellular carcinoma. Conclusions CD147 promotes hepatocellular carcinoma cells collective invasion via upregulating cathepsin B expression and targeting CD147 would be valuable for the development of novel therapeutic modalities against invasion and metastasis of cancer.
Collapse
Affiliation(s)
- Shi-Jie Wang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Dong Chao
- Department of thoracic surgery, the 940th hospital of joint logistics support force of Chinese People's Liberation Army, Lanzhou, 730050, P. R. China
| | - Wei Wei
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jia-Yue Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Fen-Ling Liu
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ling Li
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| |
Collapse
|
5
|
Overexpression of long non-coding RNA H19 promotes invasion and autophagy via the PI3K/AKT/mTOR pathways in trophoblast cells. Biomed Pharmacother 2018. [PMID: 29522949 DOI: 10.1016/j.biopha.2018.02.134] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Preeclampsia (PE), characterized by hypertension and proteinuria, is a leading cause of perinatal and maternal mortality. Considering that mutation of H19 gene is closely associated with PE, we aimed to explore the functional role of long non-coding RNA H19 (lncRNA-H19) in trophoblast cells. METHODS Expression of lncRNA-H19 in placenta tissues from patients with PE and healthy pregnant women after delivery was determined by quantitative reverse transcription PCR. Then, lncRNA-H19 was abnormally expressed in JEG-3 and HTR-8 cells by stable cell transfection. Cell viability and invasion were assessed by using CCK-8 and Matrigel-coated Millicell system, respectively. Expression of key proteins associated with invasion and autophagy as well as key kinases in the phosphatidylinositol-3-kinase (PI3K)/AKT/mechanistic target of rapamycin (mTOR) pathways were measured by Western blot analysis. Number of GFP-labeled autophagosomes was counted under a confocal microscope. RESULTS Level of lncRNA-H19 in the placenta tissues from PE patients was higher than that from healthy controls. LncRNA-H19 overexpression reduced cell viability but increased invasion of JEG-3 and HTR-8 cells. LncRNA-H19 silence showed the opposite effects. In addition, lncRNA-H19 overexpression promoted autophagy in trophoblast cells. Furthermore, phosphorylated levels of key kinases in the PI3K/AKT/mTOR pathways were enhanced by lncRNA-H19 overexpression while were reduced by lncRNA-H19 silence. CONCLUSION LncRNA-H19, which was up-regulated in PE, reduced cell viability but promoted invasion and autophagy in trophoblast cells, along with activation of the PI3K/AKT/mTOR pathways. Our study provides a theoretical basis for pathogenesis of PE, aiding to identification of novel therapeutic strategies for PE.
Collapse
|
6
|
Xu C, Li X, Guo P, Wang J. Hypoxia-Induced Activation of JAK/STAT3 Signaling Pathway Promotes Trophoblast Cell Viability and Angiogenesis in Preeclampsia. Med Sci Monit 2017; 23:4909-4917. [PMID: 29030540 PMCID: PMC5652249 DOI: 10.12659/msm.905418] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background To explore the effect of hypoxic preconditioning on the JAK/STAT3 signaling pathway and its effect on trophoblast cell viability and angiogenesis in preeclampsia (PE). Material/Methods Placental tissues from normal pregnant women and PE patients were collected to detect the expression levels of JAK and STAT3. Trophoblast cells separated from the PE patients were assigned to 4 groups. The expression levels of phosphorylated p-JAK and p-STAT3 were measured by Western blot. Cell viability, colony-forming ability, and cell apoptosis were assessed. The levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and hepatocyte growth factor (HGF) were determined by enzyme-linked immunosorbent assay (ELISA). Results The expression levels of JAK and STAT3 were higher in the placental tissues of PE patients than in those of normal pregnant women. Compared with the blank group, in the hypoxia group the expression levels of p-JAK and p-STAT3 were increased, cell viability was promoted, the number of colonies was increased, cell apoptosis was inhibited, and the levels of VEGF, bFGF, and HGF were all elevated. However, in comparison with the hypoxia group, the expression levels of p-JAK and p-STAT3 were reduced, the cell viability was inhibited, the colonies were decreased, the levels of VEGF, bFGF, and HGF were all decreased, and cell apoptosis was promoted in the hypoxia + si-JAK group. Conclusions These findings indicate that hypoxic preconditioning may contribute to activation of the JAK/STAT3 signaling pathway, thus promoting trophoblast cell viability and angiogenesis in PE.
Collapse
Affiliation(s)
- Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Xuejiao Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Peiling Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| | - Jia Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|