1
|
Biswas P, Roy R, Ghosh K, Nath D, Samadder A, Nandi S. To quest new targets of Plasmodium parasite and their potential inhibitors to combat antimalarial drug resistance. J Parasit Dis 2024; 48:671-722. [PMID: 39493470 PMCID: PMC11527868 DOI: 10.1007/s12639-024-01687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/08/2024] [Indexed: 11/05/2024] Open
Abstract
Malaria remains a global health challenge with significant mortality and morbidity annually, with resistant parasite strains complicating treatment efforts. There is an acute need for novel antimalarial drugs that can put a stop to the future public health crisis caused by the multi-drug resistance strains of the Plasmodium parasite. However, the discovery of these new components is very challenging in the context of the generation of multi-drug resistance properties of malaria. The novel drugs also need to have several properties involving enhanced therapeutic prospects, successful treatment capabilities, and novel mechanisms of action that will forestall the resistance. To successfully achieve this aim researchers are trying to focus on exploring promising malaria targets. Various approaches have been made for the development of drugs for malaria including the remodelling of existing drugs and the development of novel inhibitors which acts on new targets. Advancement in the study provides more information on the biology of parasites and the new targets which help in the development of novel drugs. The present review focuses on the study of novel targets of malaria parasites and subsequent inhibitors of those particular targets. Some of these targets include malarial protease, various transporter proteins, enzymes involved in the synthesis of DNA, and nucleic acids like dihydroorotate dehydrogenase, dihydrofolate reductase, apicoplast and dihydropteroate synthase. Other potential targets are also included in this review such as isoprenoid biosynthesis, farnesyl transferase of parasite, P. falciparum translational elongation factor 2, and phosphatidyl inositol 4 kinase. These promising targets have also been summed up along with their corresponding inhibitors for combating multi-drug resistance malaria.
Collapse
Affiliation(s)
- Pratyusa Biswas
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Rini Roy
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Kuldip Ghosh
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Debjani Nath
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Asmita Samadder
- Department of Zoology, University of Kalyani, Kalyani, Nadia 741235 India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713 India
| |
Collapse
|
2
|
Sharma M, Lolli ML, Vyas VK. A comprehensive review of synthetic strategies and SAR studies for the discovery of PfDHODH inhibitors as antimalarial agents. Part 2: Non-DSM compounds. Bioorg Chem 2024; 153:107754. [PMID: 39241585 DOI: 10.1016/j.bioorg.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Malaria remains a severe global health concern, with 249 million cases reported in 2022, according to the World Health Organization (WHO) [1]. PfDHODH is an essential enzyme in malaria parasites that helps to synthesize certain building blocks for their growth and development. It has been confirmed that targeting Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme could lead to new and effective antimalarial drugs. Inhibitors of PfDHODH have shown potential for slowing down parasite growth during both the blood and liver stages. Over the last two decades, many species selective PfDHODH inhibitors have been designed, including DSM compounds and other non-DSM compounds. In the first chapter [2] of this review, we have reviewed all synthetic schemes and structure-activity relationship (SAR) studies of DSM compounds. In this second chapter, we have compiled all the other non-DSM PfDHODH inhibitors based on dihydrothiophenones, thiazoles, hydroxyazoles, and N-alkyl-thiophene-2-carboxamides. The review not only offers an insightful overview of the synthetic methods employed but also explores into alternative routes and innovative strategies involving different catalysts and chemical reagents. A critical aspect covered in the review is the SAR studies, which provide a comprehensive understanding of how structural modifications impact the efficacy of PfDHODH inhibitors and challenges related to the discovery of PfDHODH inhibitors. This information is invaluable for scientists engaged in the development of new antimalarial drugs, offering insights into the most promising scaffolds and their synthetic techniques.
Collapse
Affiliation(s)
- Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India.
| |
Collapse
|
3
|
Gehlot P, Vyas VK. Recent advances on patents of Plasmodium falciparum dihydroorotate dehydrogenase ( PfDHODH) inhibitors as antimalarial agents. Expert Opin Ther Pat 2023; 33:579-596. [PMID: 37942637 DOI: 10.1080/13543776.2023.2280596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Pyrimidine nucleotides are essential for the parasite's growth and replication. Parasites have only a de novo pathway for the biosynthesis of pyrimidine nucleotides. Dihydroorotate dehydrogenase (DHODH) enzyme is involved in the rate-limiting step of the pyrimidine biosynthesis pathway. DHODH is a biochemical target for the discovery of new antimalarial agents. AREA COVERED This review discussed the development of patented PfDHODH inhibitors published between 2007 and 2023 along with their chemical structures and activities. EXPERT OPINION PfDHODH enzyme is involved in the rate-limiting fourth step of the pyrimidine biosynthesis pathway. Thus, inhibition of PfDHODH using species-selective inhibitors has drawn much attention for treating malaria because they inhibit parasite growth without affecting normal human functions. Looking at the current scenario of antimalarial drug resistance with most of the available antimalarial drugs, there is a huge need for targeted newer agents. Newer agents with unique mechanisms of action may be devoid of drug toxicity, adverse effects, and the ability of parasites to quickly gain resistance, and PfDHODH inhibitors can be those newer agents. Many PfDHODH inhibitors were patented in the past, and the dependency of Plasmodium on de novo pyrimidine provided a new approach for the development of novel antimalarial agents.
Collapse
Affiliation(s)
- Pinky Gehlot
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
4
|
Babai R, Izrael R, Vértessy BG. Characterization of the dynamics of Plasmodium falciparum deoxynucleotide-triphosphate pool in a stage-specific manner. Sci Rep 2022; 12:19926. [PMID: 36402851 PMCID: PMC9675800 DOI: 10.1038/s41598-022-23807-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding and characterizing the molecular background of the maintenance of genomic integrity might be a major factor in comprehending the exceptional ability of the malaria parasite, Plasmodium falciparum to adapt at a fast pace to antimalarials. A balanced nucleotide pool is an essential factor for high-fidelity replication. The lack of detailed studies on deoxynucleotide-triphosphate (dNTP) pools in various intraerythrocytic stages of Plasmodium falciparum motivated our present study. Here, we focused on the building blocks of DNA and utilized an EvaGreen-based dNTP incorporation assay to successfully measure the temporal dynamics of dNTPs in every intraerythrocytic stage and in drug-treated trophozoites. Our findings show that the ratio of dNTPs in the ring-stage parasites significantly differs from the more mature trophozoite and schizont stages. We were also able to detect dGTP levels that have never been shown before and found it to be the least abundant dNTP in all stages. Treatment with WR99210, a TS-DHFR inhibitor drug, affected not only dTTP, but also dGTP levels, despite its presumed selective action on pyrimidine biosynthesis. Results from our studies might assist in a better understanding of genome integrity mechanisms and may potentially lead to novel drug related aspects involving purine and pyrimidine metabolic targets.
Collapse
Affiliation(s)
- Réka Babai
- grid.425578.90000 0004 0512 3755Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117 Hungary ,grid.6759.d0000 0001 2180 0451George A. Olah Doctoral School of Chemistry and Chemical Technology, BME Budapest University of Technology and Economics, Budapest, 1111 Hungary ,grid.6759.d0000 0001 2180 0451Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111 Hungary
| | - Richard Izrael
- grid.425578.90000 0004 0512 3755Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117 Hungary ,grid.9008.10000 0001 1016 9625Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, 6720 Hungary
| | - Beáta G. Vértessy
- grid.425578.90000 0004 0512 3755Malaria Research Laboratory, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117 Hungary ,grid.6759.d0000 0001 2180 0451Department of Applied Biotechnology and Food Sciences, BME Budapest University of Technology and Economics, Budapest, 1111 Hungary
| |
Collapse
|
5
|
Zolfaghari Emameh R, Barker HR, Turpeinen H, Parkkila S, Hytönen VP. A reverse vaccinology approach on transmembrane carbonic anhydrases from Plasmodium species as vaccine candidates for malaria prevention. Malar J 2022; 21:189. [PMID: 35706028 PMCID: PMC9199335 DOI: 10.1186/s12936-022-04186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a significant parasitic infection, and human infection is mediated by mosquito (Anopheles) biting and subsequent transmission of protozoa (Plasmodium) to the blood. Carbonic anhydrases (CAs) are known to be highly expressed in the midgut and ectoperitrophic space of Anopheles gambiae. Transmembrane CAs (tmCAs) in Plasmodium may be potential vaccine candidates for the control and prevention of malaria. METHODS In this study, two groups of transmembrane CAs, including α-CAs and one group of η-CAs were analysed by immunoinformatics and computational biology methods, such as predictions on transmembrane localization of CAs from Plasmodium spp., affinity and stability of different HLA classes, antigenicity of tmCA peptides, epitope and proteasomal cleavage of Plasmodium tmCAs, accessibility of Plasmodium tmCAs MHC-ligands, allergenicity of Plasmodium tmCAs, disulfide-bond of Plasmodium tmCAs, B cell epitopes of Plasmodium tmCAs, and Cell type-specific expression of Plasmodium CAs. RESULTS Two groups of α-CAs and one group of η-CAs in Plasmodium spp. were identified to contain tmCA sequences, having high affinity towards MHCs, high stability, and strong antigenicity. All putative tmCAs were predicted to contain sequences for proteasomal cleavage in antigen presenting cells (APCs). CONCLUSIONS The predicted results revealed that tmCAs from Plasmodium spp. can be potential targets for vaccination against malaria.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories Ltd and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Enninful KS, Kwofie SK, Tetteh-Tsifoanya M, Lamptey ANL, Djameh G, Nyarko S, Ghansah A, Wilson MD. Targeting the Plasmodium falciparum’s Thymidylate Monophosphate Kinase for the Identification of Novel Antimalarial Natural Compounds. Front Cell Infect Microbiol 2022; 12:868529. [PMID: 35694550 PMCID: PMC9174469 DOI: 10.3389/fcimb.2022.868529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Recent reports of resistance to artemisinin-based combination drugs necessitate the need to discover novel antimalarial compounds. The present study was aimed at identifying novel antimalarial compounds from natural product libraries using computational methods. Plasmodium falciparum is highly dependent on the pyrimidine biosynthetic pathway, a de novo pathway responsible for the production of pyrimidines, and the parasite lacks the pyrimidine salvage enzymes. The P. falciparum thymidylate monophosphate kinase (PfTMPK) is an important protein necessary for rapid DNA replication; however, due to its broad substrate specificity, the protein is distinguished from its homologs, making it a suitable drug target. Compounds from AfroDB, a database of natural products originating from Africa, were screened virtually against PfTMPK after filtering the compounds for absorption, distribution, metabolism, excretion, and toxicity (ADMET)-acceptable compounds with FAF-Drugs4. Thirteen hits with lower binding energies than thymidine monophosphate were selected after docking. Among the thirteen compounds, ZINC13374323 and ZINC13365918 with binding energies of −9.4 and −8.9 kcal/mol, respectively, were selected as plausible lead compounds because they exhibited structural properties that ensure proper binding at the active site and inhibitory effect against PfTMPK. ZINC13374323 (also called aurantiamide acetate) is known to exhibit anti-inflammatory and antiviral activities, and ZINC13365918 exhibits antileishmanial activity. Furthermore, aurantiamide acetate, which is commercially available, is a constituent of Artemisia annua, the herb from which artemisinin was derived. The compound also shares interactions with several residues with a potent thymidine analog inhibitor of PfTMPK. The anti-plasmodial activity of aurantiamide acetate was evaluated in vitro, and the mean half-maximal inhibitory concentration (IC50) was 69.33 μM when synchronized P. falciparum 3D7 culture was used as compared to IC50 > 100 μM with asynchronized culture. The significance of our findings within the context of malaria treatment strategies and challenges is discussed.
Collapse
Affiliation(s)
- Kweku S. Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Mark Tetteh-Tsifoanya
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Amanda N. L. Lamptey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Georgina Djameh
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Samuel Nyarko
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Stritch School of Medicine, Loyola University of Chicago, Maywood, IL, United States
- *Correspondence: Michael D. Wilson,
| |
Collapse
|
7
|
Identification of 3,4-Dihydro-2 H,6 H-pyrimido[1,2- c][1,3]benzothiazin-6-imine Derivatives as Novel Selective Inhibitors of Plasmodium falciparum Dihydroorotate Dehydrogenase. Int J Mol Sci 2021; 22:ijms22137236. [PMID: 34281290 PMCID: PMC8268581 DOI: 10.3390/ijms22137236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum's resistance to available antimalarial drugs highlights the need for the development of novel drugs. Pyrimidine de novo biosynthesis is a validated drug target for the prevention and treatment of malaria infection. P. falciparum dihydroorotate dehydrogenase (PfDHODH) catalyzes the oxidation of dihydroorotate to orotate and utilize ubiquinone as an electron acceptor in the fourth step of pyrimidine de novo biosynthesis. PfDHODH is targeted by the inhibitor DSM265, which binds to a hydrophobic pocket located at the N-terminus where ubiquinone binds, which is known to be structurally divergent from the mammalian orthologue. In this study, we screened 40,400 compounds from the Kyoto University chemical library against recombinant PfDHODH. These studies led to the identification of 3,4-dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine and its derivatives as a new class of PfDHODH inhibitor. Moreover, the hit compounds identified in this study are selective for PfDHODH without inhibition of the human enzymes. Finally, this new scaffold of PfDHODH inhibitors showed growth inhibition activity against P. falciparum 3D7 with low toxicity to three human cell lines, providing a new starting point for antimalarial drug development.
Collapse
|
8
|
Iyori M, Ogawa R, Emran TB, Tanbo S, Yoshida S. Characterization of the Gene Expression Patterns in the Murine Liver Following Intramuscular Administration of Baculovirus. Gene Expr 2021; 20:147-155. [PMID: 33115550 PMCID: PMC8201657 DOI: 10.3727/105221620x16039045978676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intramuscular administration of wild-type baculovirus is able to both protect against Plasmodium sporozoite challenge and eliminate liver-stage parasites via a Toll-like receptor 9-independent pathway. To investigate its effector mechanism(s), the gene expression profile in the liver of baculovirus-administered mice was characterized by cDNA microarray analysis. The ingenuity pathway analysis gene ontology module revealed that the major gene subsets induced by baculovirus were immune-related signaling, such as interferon signaling. A total of 40 genes commonly upregulated in a Toll-like receptor 9-independent manner were included as possible candidates for parasite elimination. This gene subset consisted of NT5C3, LOC105246895, BTC, APOL9a/b, G3BP3, SLC6A6, USP25, TRIM14, and PSMB8 as the top 10 candidates according to the special unit. These findings provide new insight into effector molecules responsible for liver-stage parasite killing and, possibly, the development of a new baculovirus-mediated prophylactic and therapeutic biopharmaceutical for malaria.
Collapse
Affiliation(s)
- Mitsuhiro Iyori
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Ryohei Ogawa
- †Department of Radiological Sciences, University of Toyama, Toyama, Japan
| | - Talha Bin Emran
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shuta Tanbo
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shigeto Yoshida
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| |
Collapse
|
9
|
Farooq S, Ngaini Z. One‐pot
and
two‐pot
methods for chalcone derived pyrimidines synthesis and applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| |
Collapse
|
10
|
Ibrahim ZY, Uzairu A, Shallangwa G, Abechi S. In-silico Design of Aryl and Aralkyl Amine-Based Triazolopyrimidine Derivatives with Enhanced Activity Against Resistant Plasmodium falciparum. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00199-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractA blend of genetic algorithm with multiple linear regression (GA-MLR) method was utilized in generating a quantitative structure–activity relationship (QSAR) model on the antimalarial activity of aryl and aralkyl amine-based triazolopyrimidine derivatives. The structures of derivatives were optimized using density functional theory (DFT) DFT/B3LYP/6–31 + G* basis set to generate their molecular descriptors, where two (2) predictive models were developed with the aid of these descriptors. The model with an excellent statistical parameters; high coefficient of determination (R2) = 0.8884, cross-validated R2 (Q2cv) = 0.8317 and highest external validated R2 (R2pred) = 0.7019 was selected as the best model. The model generated was validated through internal (leave-one-out (LOO) cross-validation), external test set, and Y-randomization test. These parameters are indicators of robustness, excellent prediction, and validity of the selected model. The most relevant descriptor to the antimalarial activity in the model was found to be GATS6p (Geary autocorrelation—lag 6/weighted by polarizabilities), in the model due to its highest mean effect. The descriptor (GATS6p) was significant in the in-silico design of sixteen (16) derivatives of aryl and aralkyl amine-based triazolopyrimidine adopting compound DSM191 with the highest activity (pEC50 = 7.1805) as the design template. The design compound D8 was found to be the most active compound due to its superior hypothetical activity (pEC50 = 8.9545).
Collapse
|
11
|
Bosch SS, Lunev S, Batista FA, Linzke M, Kronenberger T, Dömling ASS, Groves MR, Wrenger C. Molecular Target Validation of Aspartate Transcarbamoylase from Plasmodium falciparum by Torin 2. ACS Infect Dis 2020; 6:986-999. [PMID: 32129597 DOI: 10.1021/acsinfecdis.9b00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malaria is a tropical disease that kills about half a million people around the world annually. Enzymatic reactions within pyrimidine biosynthesis have been proven to be essential for Plasmodium proliferation. Here we report on the essentiality of the second enzymatic step of the pyrimidine biosynthesis pathway, catalyzed by aspartate transcarbamoylase (ATC). Crystallization experiments using a double mutant ofPlasmodium falciparum ATC (PfATC) revealed the importance of the mutated residues for enzyme catalysis. Subsequently, this mutant was employed in protein interference assays (PIAs), which resulted in inhibition of parasite proliferation when parasites transfected with the double mutant were cultivated in medium lacking an excess of nutrients, including aspartate. Addition of 5 or 10 mg/L of aspartate to the minimal medium restored the parasites' normal growth rate. In vitro and whole-cell assays in the presence of the compound Torin 2 showed inhibition of specific activity and parasite growth, respectively. In silico analyses revealed the potential binding mode of Torin 2 to PfATC. Furthermore, a transgenic ATC-overexpressing cell line exhibited a 10-fold increased tolerance to Torin 2 compared with control cultures. Taken together, our results confirm the antimalarial activity of Torin 2, suggesting PfATC as a target of this drug and a promising target for the development of novel antimalarials.
Collapse
Affiliation(s)
- Soraya S. Bosch
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Sergey Lunev
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Fernando A. Batista
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Marleen Linzke
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany
| | - Alexander S. S. Dömling
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Matthew R. Groves
- Structural Biology Unit, XB20 Drug Design, Department of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| |
Collapse
|
12
|
Oyelade J, Isewon I, Aromolaran O, Uwoghiren E, Dokunmu T, Rotimi S, Aworunse O, Obembe O, Adebiyi E. Computational Identification of Metabolic Pathways of Plasmodium falciparum using the k-Shortest Path Algorithm. Int J Genomics 2019; 2019:1750291. [PMID: 31662957 PMCID: PMC6791207 DOI: 10.1155/2019/1750291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/28/2018] [Accepted: 07/29/2019] [Indexed: 02/02/2023] Open
Abstract
Plasmodium falciparum, a malaria pathogen, has shown substantial resistance to treatment coupled with poor response to some vaccines thereby requiring urgent, holistic, and broad approach to prevent this endemic disease. Understanding the biology of the malaria parasite has been identified as a vital approach to overcome the threat of malaria. This study is aimed at identifying essential proteins unique to malaria parasites using a reconstructed iPfa genome-scale metabolic model (GEM) of the 3D7 strain of Plasmodium falciparum by filling gaps in the model with nineteen (19) metabolites and twenty-three (23) reactions obtained from the MetaCyc database. Twenty (20) currency metabolites were removed from the network because they have been identified to produce shortcuts that are biologically infeasible. The resulting modified iPfa GEM was a model using the k-shortest path algorithm to identify possible alternative metabolic pathways in glycolysis and pentose phosphate pathways of Plasmodium falciparum. Heuristic function was introduced for the optimal performance of the algorithm. To validate the prediction, the essentiality of the reactions in the reconstructed network was evaluated using betweenness centrality measure, which was applied to every reaction within the pathways considered in this study. Thirty-two (32) essential reactions were predicted among which our method validated fourteen (14) enzymes already predicted in the literature. The enzymatic proteins that catalyze these essential reactions were checked for homology with the host genome, and two (2) showed insignificant similarity, making them possible drug targets. In conclusion, the application of the intelligent search technique to the metabolic network of P. falciparum predicts potential biologically relevant alternative pathways using graph theory-based approach.
Collapse
Affiliation(s)
- Jelili Oyelade
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria
| | - Itunuoluwa Isewon
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria
| | - Olufemi Aromolaran
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria
| | - Efosa Uwoghiren
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria
| | - Titilope Dokunmu
- Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Rotimi
- Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | | | - Olawole Obembe
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
- Covenant University Bioinformatics Research Cluster (CUBRe), Ota, Nigeria
| |
Collapse
|
13
|
Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues. J Med Chem 2019; 62:8365-8391. [PMID: 30964283 DOI: 10.1021/acs.jmedchem.9b00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.
Collapse
Affiliation(s)
- Thomas Cheviet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Isabelle Lefebvre-Tournier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), UMR 5235 UM-CNRS , Université Montpellier , Place E. Bataillon , 34095 Montpellier , France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| |
Collapse
|
14
|
QSAR Study of N-Myristoyltransferase Inhibitors of Antimalarial Agents. Molecules 2018; 23:molecules23092348. [PMID: 30217086 PMCID: PMC6225221 DOI: 10.3390/molecules23092348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/23/2022] Open
Abstract
Malaria is a disease caused by protozoan parasites of the genus Plasmodium that affects millions of people worldwide. In recent years there have been parasite resistances to several drugs, including the first-line antimalarial treatment. With the aim of proposing new drugs candidates for the treatment of disease, Quantitative Structure–Activity Relationship (QSAR) methodology was applied to 83 N-myristoyltransferase inhibitors, synthesized by Leatherbarrow et al. The QSAR models were developed using 63 compounds, the training set, and externally validated using 20 compounds, the test set. Ten different alignments for the two test sets were tested and the models were generated by the technique that combines genetic algorithms and partial least squares. The best model shows r2 = 0.757, q2adjusted = 0.634, R2pred = 0.746, R2m = 0.716, ∆R2m = 0.133, R2p = 0.609, and R2r = 0.110. This work suggested a good correlation with the experimental results and allows the design of new potent N-myristoyltransferase inhibitors.
Collapse
|
15
|
The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen-encoding var genes. PLoS Biol 2018; 16:e2004328. [PMID: 29529020 PMCID: PMC5864071 DOI: 10.1371/journal.pbio.2004328] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/22/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023] Open
Abstract
Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.
Collapse
|
16
|
Identification of a non-competitive inhibitor of Plasmodium falciparum aspartate transcarbamoylase. Biochem Biophys Res Commun 2018; 497:835-842. [PMID: 29476738 DOI: 10.1016/j.bbrc.2018.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 11/24/2022]
Abstract
Aspartate transcarbamoylase catalyzes the second step of de-novo pyrimidine biosynthesis. As malarial parasites lack pyrimidine salvage machinery and rely on de-novo production for growth and proliferation, this pathway is a target for drug discovery. Previously, an apo crystal structure of aspartate transcarbamoylase from Plasmodium falciparum (PfATC) in its T-state has been reported. Here we present crystal structures of PfATC in the liganded R-state as well as in complex with the novel inhibitor, 2,3-napthalenediol, identified by high-throughput screening. Our data shows that 2,3-napthalediol binds in close proximity to the active site, implying an allosteric mechanism of inhibition. Furthermore, we report biophysical characterization of 2,3-napthalenediol. These data provide a promising starting point for structure based drug design targeting PfATC and malarial de-novo pyrimidine biosynthesis.
Collapse
|
17
|
El Kouni MH. Pyrimidine metabolism in schistosomes: A comparison with other parasites and the search for potential chemotherapeutic targets. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:55-80. [PMID: 28735972 PMCID: PMC5593796 DOI: 10.1016/j.cbpb.2017.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022]
Abstract
Schistosomes are responsible for the parasitic disease schistosomiasis, an acute and chronic parasitic ailment that affects >240 million people in 70 countries worldwide. It is the second most devastating parasitic disease after malaria. At least 200,000 deaths per year are associated with the disease. In the absence of the availability of vaccines, chemotherapy is the main stay for combating schistosomiasis. The antischistosomal arsenal is currently limited to a single drug, Praziquantel, which is quite effective with a single-day treatment and virtually no host-toxicity. Recently, however, the question of reduced activity of Praziquantel has been raised. Therefore, the search for alternative antischistosomal drugs merits the study of new approaches of chemotherapy. The rational design of a drug is usually based on biochemical and physiological differences between pathogens and host. Pyrimidine metabolism is an excellent target for such studies. Schistosomes, unlike most of the host tissues, require a very active pyrimidine metabolism for the synthesis of DNA and RNA. This is essential for the production of the enormous numbers of eggs deposited daily by the parasite to which the granulomas response precipitates the pathogenesis of schistosomiasis. Furthermore, there are sufficient differences between corresponding enzymes of pyrimidine metabolism from the host and the parasite that can be exploited to design specific inhibitors or "subversive substrates" for the parasitic enzymes. Specificities of pyrimidine transport also diverge significantly between parasites and their mammalian host. This review deals with studies on pyrimidine metabolism in schistosomes and highlights the unique characteristic of this metabolism that could constitute excellent potential targets for the design of safe and effective antischistosomal drugs. In addition, pyrimidine metabolism in schistosomes is compared with that in other parasites where studies on pyrimidine metabolism have been more elaborate, in the hope of providing leads on how to identify likely chemotherapeutic targets which have not been looked at in schistosomes.
Collapse
Affiliation(s)
- Mahmoud H El Kouni
- Department of Pharmacology and Toxicology, Center for AIDS Research, Comprehensive Cancer Center, General Clinical Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
18
|
Sambaiah M, Raghavulu K, Shiva Kumar K, Yennam S, Behera M. Synthesis of novel fused chromone–pyrimidine hybrids and 2,4,5-trisubstituted pyrimidine derivatives via ANRORC rearrangement. NEW J CHEM 2017. [DOI: 10.1039/c7nj01839h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and versatile procedure for the synthesis of functionalized novel 2,5-diphenyl-5H-chromeno[4,3-d]pyrimidin-5-ol and (2,4-diphenylpyrimidin-5-yl) (2-hydroxyphenyl) methanone has been described.
Collapse
Affiliation(s)
- M. Sambaiah
- Chemistry Services
- GVK Biosciences Pvt. Ltd
- Hyderabad-500076
- India
- Department of Chemistry
| | - K. Raghavulu
- Chemistry Services
- GVK Biosciences Pvt. Ltd
- Hyderabad-500076
- India
| | | | | | | |
Collapse
|