1
|
Wang Z. Role of transforming growth factor-β in airway remodelling in bronchiolitis obliterans. Growth Factors 2023; 41:192-209. [PMID: 37487145 DOI: 10.1080/08977194.2023.2239356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Airway remodelling is the main pathological mechanism of bronchiolitis obliterans (BO). Several studies have found that transforming growth factor-β (TGF-β) expression is increased in BO during airway remodelling, where it plays an important role in various biological processes by binding to its receptor complex to activate multiple signalling proteins and pathways. This review examines the role of TGF-β in airway remodelling in BO and its potential as a therapeutic target, highlighting the mechanisms of TGF-β activation and signalling, cellular targets of TGF-β actions, and research progress in TGF-β signalling and TGF-β-mediated processes.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Long Y, Wang H, Ma Z, Li Y, Ma Z, Yu P, Tang X, Liu R. Combined Epimedii Folium and Ligustri Lucidi Fructus with dexamethasone alleviate the proliferation of airway smooth muscle cells by regulating apoptosis/autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116547. [PMID: 37178983 DOI: 10.1016/j.jep.2023.116547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) theory believes kidney deficiency is the root cause of chronic refractory asthma with pathological changes of airway remodeling. Our previous experiments confirmed that the combination of Epimedii Folium and Ligustri Lucidi Fructus (ELL) with the effect of nourishing Yin and Yang of the kidney could improve the pathological changes of airway remodeling in asthmatic rats, but the specific mechanism remains unclear. AIM OF THE STUDY This research was designed to reveal the synergy of ELL and dexamethasone (Dex) in the proliferation, apoptosis, and autophagy of airway smooth muscle cells (ASMCs). MATERIALS AND METHODS Primary cultures of ASMCs from rats were prepared and induced with histamine (Hist), Z-DEVD-FMK (ZDF), rapamycin (Rap), or 3-Methyladenine (3-MA) at generation 3-7 for 24 or 48 h. Subsequently, the cells were treated with Dex, ELL, and ELL&Dex for 24 or 48 h. The effect of various concentrations of inducers and drugs on cell viability was detected by Methyl Thiazolyl Tetrazolium (MTT) assay, cell proliferation was tested using immunocytochemistry (ICC) by detecting Ki67 protein, cell apoptosis was measured by Annexin V-FITC/PI assay and Hoechst nuclear staining, cell ultrastructure was observed by transmission electron microscopy (TEM), and immunofluorescence (IF), western blot (WB) combined with quantitative real-time PCR (qPCR) were used for measuring autophagy and apoptosis-related genes including protein 53 (P53), cysteinyl aspartate-specific proteinase (Caspase)-3, microtubule-associated protein 1 light chain 3 (LC3), Beclin-1, mammalian target of rapamycin (mTOR) and p-mTOR. RESULTS In ASMCs, Hist and ZDF promoted cell proliferation, significantly decreased Caspase-3 protein expression, and up-regulated Beclin-1 levels; Dex alone and in combination with ELL promoted Beclin-1, Caspase-3, and P53 expression, enhancing autophagy activity and apoptosis in Hist and ZDF-induced AMSCs. In contrast, Rap inhibited cell viability, increased Caspase-3, P53, Beclin-1, and LC3-II/I and decreased the levels of mTOR and p-mTOR with promoting apoptosis and autophagy; ELL or ELL&Dex reduced P53, Beclin-1, and LC3-II/I to down-regulate apoptosis and the excessive autophagic state of ASMCs induced by Rap. In the 3-MA model, cell viability and autophagy were reduced; ELL&Dex significantly upgraded the expression of Beclin-1, P53, and Caspase-3 and promoted apoptosis and autophagy of ASMCs. CONCLUSIONS These results suggest that ELL combined with Dex may regulate the proliferation of ASMCs by promoting apoptosis and autophagy and be a potential medicine for the treatment of asthma.
Collapse
Affiliation(s)
- Yuting Long
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Han Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zitong Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuman Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zaina Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ping Yu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xiufeng Tang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Renhui Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of Traditional Chinese Medicine Collateral Disease Theory Research, No.10 Xitoutiao, Youanmenwai, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
3
|
Shinu P, Gupta GL, Sharma M, Khan S, Goyal M, Nair AB, Kumar M, Soliman WE, Rahman A, Attimarad M, Venugopala KN, Altaweel AAA. Pharmacological Features of 18β-Glycyrrhetinic Acid: A Pentacyclic Triterpenoid of Therapeutic Potential. PLANTS (BASEL, SWITZERLAND) 2023; 12:1086. [PMID: 36903944 PMCID: PMC10005454 DOI: 10.3390/plants12051086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Glycyrrhiza glabra L. (belonging to the family Leguminosae), commonly known as Licorice, is a popular medicinal plant that has been used in traditional medicine worldwide for its ethnopharmacological efficacy in treating several ailments. Natural herbal substances with strong biological activity have recently received much attention. The main metabolite of glycyrrhizic acid is 18β-glycyrrhetinic acid (18βGA), a pentacyclic triterpene. A major active plant component derived from licorice root, 18βGA has sparked a lot of attention due to its pharmacological properties. The current review thoroughly examines the literature on 18βGA, a major active plant component obtained from Glycyrrhiza glabra L. The current work provides insight into the pharmacological activities of 18βGA and the potential mechanisms of action involved. The plant contains a variety of phytoconstituents such as 18βGA, which has a variety of biological effects including antiasthmatic, hepatoprotective, anticancer, nephroprotective, antidiabetic, antileishmanial, antiviral, antibacterial, antipsoriasis, antiosteoporosis, antiepileptic, antiarrhythmic, and anti-inflammatory, and is also useful in the management of pulmonary arterial hypertension, antipsychotic-induced hyperprolactinemia, and cerebral ischemia. This review examines research on the pharmacological characteristics of 18βGA throughout recent decades to demonstrate its therapeutic potential and any gaps that may exist, presenting possibilities for future drug research and development.
Collapse
Affiliation(s)
- Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Girdhari Lal Gupta
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM’s NMIMS University, Shirpur 425405, India
| | - Manu Sharma
- Department of Chemistry, National Forensic Sciences University Delhi Campus, New Delhi 110085, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdul Rahman Bin Faisal University, Jubail 35816, Saudi Arabia
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Manish Kumar
- Department of Pharmaceutics, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Ambala 133201, India
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | | |
Collapse
|
4
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
5
|
Song WJ, Ni SL, Fu YL, Fan JJ, Du Q, Zheng H. Relaxant effect of bioactive component compatibility of San-ao decoction on In vitro guinea pig airway smooth muscle: A dose–response relationship study. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_64_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Deng S, Gong X, Long Z, Bao B, Meng F, Feng J, Kuang H, Li H, Wang B, Wang J. Xuefu Zhuyu decoction improves asthma-induced asthenozoospermia based on network pharmacology and in vivo experiment. Andrologia 2021; 53:e14198. [PMID: 34375006 DOI: 10.1111/and.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/08/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022] Open
Abstract
This study aimed to verify that Xuefu Zhuyu decoction (XFZYD) can improve asthenozoospermia caused by asthma, and explore its potential mechanism. Ovalbumin solution is used to induce asthma rat models. Sperm concentration and motility are used to evaluate semen quality. Immunohistochemistry (IHC), Western blotting and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) are used to detect proteins and mRNA related to rat testis tissue. Haematoxylin and eosin (H&E) staining was used to observe changes in testicular tissues. Through network pharmacology, eriodictyol, 18-β-glycyrrhetinic acid, naringenin, chrysin and Hispidulin were prominent active ingredients of XFZYD. We found that XFZYD regulates the expression levels of albumin (ALB), vascular endothelial growth factor A (VEGFA), interleukin 6 (IL-6) protein and mRNA, thereby improving the histopathological morphology of the testis, increasing the concentration and motility of spermatozoa. We suggest that future research can increase the detection of hormones and oxidative stress and other related indicators, so as to conduct more in-depth exploration.
Collapse
Affiliation(s)
- Sheng Deng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuefeng Gong
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Traditional Chinese Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhongwen Long
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Binghao Bao
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fanchao Meng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junlong Feng
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Kuang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China.,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Chen J, Wang C, Xiong M, Shen Q. Efficacy and safety of Maxing Shigan Decoction in the treatment of chronic obstructive pulmonary disease: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e23284. [PMID: 33285704 PMCID: PMC7717823 DOI: 10.1097/md.0000000000023284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is currently the fourth leading cause of death in the world but is projected to be the 3rd leading cause of death by 2030. Chronic obstructive pulmonary disease is an important public health challenge, which can be prevented and treated. COPD is an important public health challenge, both preventable and treatable. In China, Maxing Shigan Decoction (MSD) has been used as a traditional Chinese medicine compound for the treatment of respiratory diseases for thousands of years. In order to evaluate the efficacy and safety of MSD in the treatment of COPD, we need to conduct meta-analysis and systematic reviews. METHODS The data comes from 7 publicly published databases, including: PubMed, The Cochrane Central Register of Controlled Trials (CENTRAL), EMbase, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Database(CBM), VIP Database, and Wanfang database. We will include randomized controlled trials (RCTs) to evaluate the effectiveness and safety of MSD in the treatment of COPD. Result measurement indicators include: TCM syndrome scores, lung function indicators, serum inflammatory factors, blood gas indicators, adverse reactions. RevMan 5.0 will be used for meta-analysis. RESULTS This study will provide high-quality evidence for the effectiveness and safety of traditional Chinese medicine therapy for COPD. CONCLUSION The results of this study will help us determine whether MSD can effectively treat COPD. ETHICS AND DISSEMINATION All analyses in this study are based on previously published research, so this study does not require ethical approval or patient consent. We will disseminate our findings electronically or in print by publishing results in peer-reviewed journals. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/H5UNB.
Collapse
Affiliation(s)
- Jinyun Chen
- College of basic medicine, Chengdu university of Traditional Chinese Medicine, Chengdu
| | - Chunrong Wang
- College of basic medicine, Chengdu university of Traditional Chinese Medicine, Chengdu
| | - Min Xiong
- College of basic medicine, Chengdu university of Traditional Chinese Medicine, Chengdu
| | - Qilin Shen
- College of basic medicine, Mianyang traditional Chinese medicine hospital, Mianyang, Sichuan, China
| |
Collapse
|
8
|
Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front Pharmacol 2019; 10:1148. [PMID: 31649532 PMCID: PMC6794426 DOI: 10.3389/fphar.2019.01148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
Collapse
Affiliation(s)
- Hui Min Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|