1
|
Ibitoye MO, Hamzaid NA, Hasnan N, Abdul Wahab AK, Davis GM. Strategies for Rapid Muscle Fatigue Reduction during FES Exercise in Individuals with Spinal Cord Injury: A Systematic Review. PLoS One 2016; 11:e0149024. [PMID: 26859296 PMCID: PMC4747522 DOI: 10.1371/journal.pone.0149024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Conclusion Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.
Collapse
Affiliation(s)
- Morufu Olusola Ibitoye
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biomedical Engineering, Faculty of Engineering and Technology, University of Ilorin, Ilorin, Nigeria
| | - Nur Azah Hamzaid
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| | - Nazirah Hasnan
- Department of Rehabilitation Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Khairi Abdul Wahab
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Glen M. Davis
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Exercise and Rehabilitation Unit, Discipline of Exercise and Sport Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
2
|
Chen JY, Zhou Z, Ang BFH, Yew AKS, Chou SM, Chia SL, Koh JSB, Howe TS. Drilling the near cortex with elongated figure-of-8 holes to reduce the stiffness of a locking compression plate construct. J Orthop Surg (Hong Kong) 2015; 23:336-40. [PMID: 26715713 DOI: 10.1177/230949901502300316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To compare the stiffness of locking compression plate (LCP) constructs with or without drilling the near cortex with elongated figure-of-8 holes. METHODS 24 synthetic bones were sawn to create a 10-mm gap and were fixed with a 9-hole 4.5-mm narrow LCP. In 12 bones, the near cortex of the adjacent holes to the LCP holes was drilled to create elongated figure-of-8 holes before screw insertion. The stiffness of LCP constructs under axial loading or 4-point bending was assessed by (1) dynamic quasi-physiological testing for fatigue strength, (2) quasi-static testing for stiffness, and (3) testing for absolute strength to failure. RESULTS None of the 24 constructs had subcatastrophic or catastrophic failure after 10 000 cycles of fatigue loading (p=1.000). The axial stiffness reduced by 16% from 613±62 to 517±44 N/mm (p=0.012) in the case group, whereas the bending stiffness was 16±1 Nm2 in both groups (p=1.000). The maximum axial load to catastrophic failure was 1596±84 N for the control group and 1627±48 N for the case group (p=0.486), whereas the maximum bending moment to catastrophic failure was 79±12 and 80±10 Nm, respectively (p=0.919). CONCLUSION Drilling the near cortex with elongated figure-of-8 holes reduces the axial stiffness of the LCP construct, without compromising its bending stiffness or strength.
Collapse
|
3
|
Petrie MA, Suneja M, Faidley E, Shields RK. A minimal dose of electrically induced muscle activity regulates distinct gene signaling pathways in humans with spinal cord injury. PLoS One 2014; 9:e115791. [PMID: 25531450 PMCID: PMC4274164 DOI: 10.1371/journal.pone.0115791] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/26/2014] [Indexed: 11/18/2022] Open
Abstract
Paralysis after a spinal cord injury (SCI) induces physiological adaptations that compromise the musculoskeletal and metabolic systems. Unlike non-SCI individuals, people with spinal cord injury experience minimal muscle activity which compromises optimal glucose utilization and metabolic control. Acute or chronic muscle activity, induced through electrical stimulation, may regulate key genes that enhance oxidative metabolism in paralyzed muscle. We investigated the short and long term effects of electrically induced exercise on mRNA expression of human paralyzed muscle. We developed an exercise dose that activated the muscle for only 0.6% of the day. The short term effects were assessed 3 hours after a single dose of exercise, while the long term effects were assessed after training 5 days per week for at least one year (adherence 81%). We found a single dose of exercise regulated 117 biological pathways as compared to 35 pathways after one year of training. A single dose of electrical stimulation increased the mRNA expression of transcriptional, translational, and enzyme regulators of metabolism important to shift muscle toward an oxidative phenotype (PGC-1α, NR4A3, IFRD1, ABRA, PDK4). However, chronic training increased the mRNA expression of specific metabolic pathway genes (BRP44, BRP44L, SDHB, ACADVL), mitochondrial fission and fusion genes (MFF, MFN1, MFN2), and slow muscle fiber genes (MYH6, MYH7, MYL3, MYL2). These findings support that a dose of electrical stimulation (∼10 minutes/day) regulates metabolic gene signaling pathways in human paralyzed muscle. Regulating these pathways early after SCI may contribute to reducing diabetes in people with longstanding paralysis from SCI.
Collapse
Affiliation(s)
- Michael A. Petrie
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Manish Suneja
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Faidley
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Richard K. Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Veterans Affairs, VA Medical Center, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
4
|
Wagner DW, Stepanyan V, Shippen JM, Demers MS, Gibbons RS, Andrews BJ, Creasey GH, Beaupre GS. Consistency among musculoskeletal models: caveat utilitor. Ann Biomed Eng 2013; 41:1787-99. [PMID: 23775441 DOI: 10.1007/s10439-013-0843-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Musculoskeletal simulation software and model repositories have broadened the user base able to perform musculoskeletal analysis and have facilitated in the sharing of models. As the recognition of musculoskeletal modeling continues to grow as an engineering discipline, the consistency in results derived from different models and software is becoming more critical. The purpose of this study was to compare eight models from three software packages and evaluate differences in quadriceps moment arms, predicted muscle forces, and predicted tibiofemoral contact forces for an idealized knee-extension task spanning -125 to +10° of knee extension. Substantial variation among models was observed for the majority of aspects evaluated. Differences among models were influenced by knee angle, with better agreement of moment arms and tibiofemoral joint contact force occurring at low to moderate knee flexion angles. The results suggest a lack of consistency among models and that output differences are not simply an artifact of naturally occurring inter-individual differences. Although generic musculoskeletal models can easily be scaled to consistent limb lengths and use the same muscle recruitment algorithm, the results suggest those are not sufficient conditions to produce consistent muscle or joint contact forces, even for simplified models with no potential of co-contraction.
Collapse
Affiliation(s)
- David W Wagner
- Center for Tissue Regeneration, Repair, and Restoration, VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Shields RK, Dudley-Javoroski S. Fatigue modulates synchronous but not asynchronous soleus activation during stimulation of paralyzed muscle. Clin Neurophysiol 2013; 124:1853-60. [PMID: 23673062 DOI: 10.1016/j.clinph.2013.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 03/07/2013] [Accepted: 03/15/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Electrical stimulation over a motor nerve yields muscle force via a combination of direct and reflex-mediated activation. We determined the influence of fatigue on reflex-mediated responses induced during supra-maximal electrical stimulation in humans with complete paralysis. METHODS We analyzed soleus electromyographic (EMG) activity during repetitive stimulation (15 Hz, 125 contractions) in 22 individuals with complete paralysis. The bout of stimulation caused significant soleus muscle fatigue (53.1% torque decline). RESULTS Before fatigue, EMG at all latencies after the M-wave was less than 1% of the maximal M-wave amplitude (% MaxM). After fatigue there was a fourfold (p < 0.05) increase in EMG at the H-reflex latency; however, the overall magnitude remained low (< 2% change in % MaxM). There was no increase in "asynchronous" EMG ∼ 1 s after the stimulus train. CONCLUSIONS Fatigue enhanced the activation to the paralyzed soleus muscle, but primarily at the H-reflex latency. The overall influence of this reflex modulation was small. Soleus EMG was not elevated during fatigue at latencies consistent with asynchronous activation. SIGNIFICANCE These findings support synchronous reflex responses increase while random asynchronous reflex activation does not change during repetitive supra-maximal stimulation, offering a clinical strategy to consistently dose stress to paralyzed tissues.
Collapse
Affiliation(s)
- Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
6
|
Dudley-Javoroski S, Shields RK. Active-resisted stance modulates regional bone mineral density in humans with spinal cord injury. J Spinal Cord Med 2013; 36:191-9. [PMID: 23809588 PMCID: PMC3654444 DOI: 10.1179/2045772313y.0000000092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE In people with spinal cord injury (SCI), active-resisted stance using electrical stimulation of the quadriceps delivered a therapeutic stress to the femur (∼150% of body weight) and attenuated bone mineral density (BMD) decline. In standard densitometry protocols, BMD is averaged over the entire bone cross-section. An asymmetric adaptation to mechanical load may be masked by non-responding regions. The purpose of this study was to test a novel method to assess regional BMD of the femur in individuals with SCI. We hypothesize that there will be regional bone-sparing changes as a result of active-resisted stance. DESIGN Mixed cross-sectional and longitudinal. SETTING Research laboratory. PARTICIPANTS Twelve individuals with SCI and twelve non-SCI controls. INTERVENTION Individuals with SCI experienced active-resisted stance or passive stance for up to 3 years. OUTCOME MEASURES Peripheral quantitative computed tomography images from were partitioned so that femur anatomic quadrants could be separately analyzed. RESULTS Over 1.5 years, the slope of BMD decline over time was slower at all quadrants for the active-resisted stance limbs. At >2 years of training, BMD was significantly higher for the active-resisted stance group than for the passive stance group (P = 0.007). BMD was preferentially spared in the posterior quadrants of the femur with active-resisted stance. CONCLUSIONS A regional measurement technique revealed asymmetric femur BMD changes between passive stance and active-resisted stance. Future studies are now underway to better understand other regional changes in BMD after SCI.
Collapse
Affiliation(s)
| | - Richard K. Shields
- Correspondence to: Richard K. Shields, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1190, USA.
| |
Collapse
|
7
|
Tan CO, Battaglino RA, Morse LR. Spinal Cord Injury and Osteoporosis: Causes, Mechanisms, and Rehabilitation Strategies. INTERNATIONAL JOURNAL OF PHYSICAL MEDICINE & REHABILITATION 2013; 1:127. [PMID: 25419534 PMCID: PMC4238383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Spinal cord injury (SCI) has a huge impact on the individual, society and the economy. Though advances in acute care resulted in greatly reduced co-morbidities, there has been much less progress preventing long-term sequelae of SCI. Among the long-term consequences of SCI is bone loss (osteoporosis) due to the mechanical unloading of the paralyzed limbs and vascular dysfunction below the level of injury. Though osteoporosis may be partially prevented via pharmacologic interventions during the acute post-injury phase, there are no clinical guidelines to treat osteoporosis during the chronic phase. Thus there is need for scientific advances to improve the rehabilitative approaches to SCI-related osteoporosis. Recent advances in application of a new technology, functional electrical stimulation, provide a new and exciting opportunity to improve bone metabolism and to provide mechanical strain to the paralyzed lower limbs sufficient to stimulate new bone formation in individuals with SCI. The purpose of this minireview is to delineate our current understanding of SCI-related osteoporosis and to highlight recent literature towards its prevention and treatment.
Collapse
Affiliation(s)
- Can Ozan Tan
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA,Spaulding Rehabilitation Hospital, Boston, MA, USA,Corresponding author: Can Ozan Tan, Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, 1575 Cambridge Street, Cambridge, MA 02138, USA, Tel: 617–758–5510; Fax: 617-758-5514;
| | - Ricardo A Battaglino
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA, USA,Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Leslie R Morse
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA,Spaulding Rehabilitation Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Dudley-Javoroski S, Saha PK, Liang G, Li C, Gao Z, Shields RK. High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury. Osteoporos Int 2012; 23:2335-46. [PMID: 22187008 PMCID: PMC3374128 DOI: 10.1007/s00198-011-1879-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/04/2011] [Indexed: 10/14/2022]
Abstract
UNLABELLED People with spinal cord injury (SCI) lose bone and muscle integrity after their injury. Early doses of stress, applied through electrically induced muscle contractions, preserved bone density at high-risk sites. Appropriately prescribed stress early after the injury may be an important consideration to prevent bone loss after SCI. INTRODUCTION Skeletal muscle force can deliver high compressive loads to bones of people with spinal cord injury (SCI). The effective osteogenic dose of load for the distal femur, a chief site of fracture, is unknown. The purpose of this study is to compare three doses of bone compressive loads at the distal femur in individuals with complete SCI who receive a novel stand training intervention. METHODS Seven participants performed unilateral quadriceps stimulation in supported stance [150% body weight (BW) compressive load-"High Dose" while opposite leg received 40% BW-"Low Dose"]. Five participants stood passively without applying quadriceps electrical stimulation to either leg (40% BW load-"Low Dose"). Fifteen participants performed no standing (0% BW load-"Untrained") and 14 individuals without SCI provided normative data. Participants underwent bone mineral density (BMD) assessment between one and six times over a 3-year training protocol. RESULTS BMD for the High Dose group significantly exceeded BMD for both the Low Dose and the Untrained groups (p < 0.05). No significant difference existed between the Low Dose and Untrained groups (p > 0.05), indicating that BMD for participants performing passive stance did not differ from individuals who performed no standing. High-resolution CT imaging of one High Dose participant revealed 86% higher BMD and 67% higher trabecular width in the High Dose limb. CONCLUSION Over 3 years of training, 150% BW compressive load in upright stance significantly attenuated BMD decline when compared to passive standing or to no standing. High-resolution CT indicated that trabecular architecture was preserved by the 150% BW dose of load.
Collapse
Affiliation(s)
- S. Dudley-Javoroski
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| | - P. K. Saha
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242-1190, USA
- Department of Radiology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242-1190, USA
| | - G. Liang
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242-1190, USA
| | - C. Li
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242-1190, USA
| | - Z. Gao
- Department of Electrical and Computer Engineering, The University of Iowa, Iowa City, IA 52242-1190, USA
| | - R. K. Shields
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, The University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| |
Collapse
|
9
|
McHenry CL, Shields RK. A biomechanical analysis of exercise in standing, supine, and seated positions: Implications for individuals with spinal cord injury. J Spinal Cord Med 2012; 35:140-7. [PMID: 22507023 PMCID: PMC3324830 DOI: 10.1179/2045772312y.0000000011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
CONTEXT/OBJECTIVE The distal femur is the primary fracture site in patients with osteoporosis after spinal cord injury (SCI). OBJECTIVE To mathematically compare the compression and shear forces at the distal femur during quadriceps stimulation in the standing, supine, and seated positions. A force analysis across these positions may be a consideration for people with SCI during neuromuscular electrical stimulation of the quadriceps. DESIGN A biomechanical model. SETTING Research laboratory. OUTCOME MEASURES Compression and shear forces from the standing, supine, and seated biomechanical models at the distal femur during constant loads generated by the quadriceps muscles. RESULTS The standing model estimated the highest compressive force at 240% body weight and the lowest shear force of 24% body weight at the distal femur compared with the supine and seated models. The supine model yielded a compressive force of 191% body weight with a shear force of 62% body weight at the distal femur. The seated model yielded the lowest compressive force of 139% body weight and the highest shear force of 215% body weight. CONCLUSIONS When inducing a range of forces in the quadriceps muscles, the seated position yields the highest shear forces and lowest compressive forces when compared with the supine and standing positions. Standing with isometric contractions generates the highest compressive loads and lowest shear forces. Early active resistive standing may provide the most effective means to prevent bone loss after SCI.
Collapse
Affiliation(s)
- Colleen L McHenry
- Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|