1
|
Shenbagam M, Kamatham AT, Vijay P, Salimath S, Patwardhan S, Sikdar S, Kataria C, Mukherjee B. A Sonomyography-Based Muscle Computer Interface for Individuals With Spinal Cord Injury. IEEE J Biomed Health Inform 2024; 28:2713-2722. [PMID: 38285571 DOI: 10.1109/jbhi.2024.3359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Impairment of hand functions in individuals with spinal cord injury (SCI) severely disrupts activities of daily living. Recent advances have enabled rehabilitation assisted by robotic devices to augment the residual function of the muscles. Traditionally, electromyography-based muscle activity sensing interfaces have been utilized to sense volitional motor intent to drive robotic assistive devices. However, the dexterity and fidelity of control that can be achieved with electromyography-based control have been limited due to inherent limitations in signal quality. We have developed and tested a muscle-computer interface (MCI) utilizing sonomyography to provide control of a virtual cursor for individuals with motor-incomplete spinal cord injury. We demonstrate that individuals with SCI successfully gained control of a virtual cursor by utilizing contractions of muscles of the wrist joint. The sonomyography-based interface enabled control of the cursor at multiple graded levels demonstrating the ability to achieve accurate and stable endpoint control. Our sonomyography-based muscle-computer interface can enable dexterous control of upper-extremity assistive devices for individuals with motor-incomplete SCI.
Collapse
|
2
|
Lin BS, Zhang Z, Peng CW, Chen SH, Chan WP, Lai CH. Effectiveness of Repetitive Transcranial Magnetic Stimulation Combined With Transspinal Electrical Stimulation on Corticospinal Excitability for Individuals With Incomplete Spinal Cord Injury: A Pilot Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4790-4800. [PMID: 38032783 DOI: 10.1109/tnsre.2023.3338226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) and transspinal electrical stimulation (tsES) have been proposed as a novel neurostimulation modality for individuals with incomplete spinal cord injury (iSCI). In this study, we integrated magnetic and electrical stimulators to provide neuromodulation therapy to individuals with incomplete spinal cord injury (iSCI). We designed a clinical trial comprising an 8-week treatment period and a 4-week treatment-free observation period. Cortical excitability, clinical features, inertial measurement unit and surface electromyography were assessed every 4 weeks. Twelve individuals with iSCI were recruited and randomly divided into a combined therapy group, a magnetic stimulation group, an electrical stimulation group, or a sham stimulation group. The magnetic and electric stimulations provided in this study were intermittent theta-burst stimulation (iTBS) and 2.5-mA direct current (DC) stimulation, respectively. Combined therapy, which involves iTBS and transspinal DC stimulation (tsDCS), was more effective than was iTBS alone or tsDCS alone in terms of increasing corticospinal excitability. In conclusion, the effectiveness of 8-week combined therapy in increasing corticospinal excitability faded 4 weeks after the cessation of treatment. According to the results, combination of iTBS rTMS and tsDCS treatment was more effective than was iTBS rTMS alone or tsDCS alone in enhancing corticospinal excitability. Although promising, the results of this study must be validated by studies with longer interventions and larger sample sizes.
Collapse
|
3
|
Effect of Biofeedback Corrective Exercise on Reaction Time and Central Somatosensory Conduction Time in Patients With Forward Head Posture and Radiculopathy: A Randomized Controlled Study. J Chiropr Med 2022; 21:39-50. [DOI: 10.1016/j.jcm.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
|
4
|
Zhang Z, Lin BS, Peng CW, Chan WP, Lin BS, Lai CH. Design of a Novel Paired Associative Nerve Stimulation System and Treatment Strategy for Incomplete Spinal Cord Injury: A Preliminary Study. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1341-1349. [PMID: 34242169 DOI: 10.1109/tnsre.2021.3095842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paired associative nerve stimulation (PANS) was proposed as a potential nerve rehabilitation treatment strategy. However, few relevant documents are available regarding the strategy, and only a few clinical studies have involved healthy people. To determine the feasibility of the neurorehabilitation treatment and to estimate the effect of PANS on nerve plasticity for individuals with incomplete spinal cord injury (iSCI), a design combining repetitive transcranial magnetic stimulation (rTMS) with trans-spinal electrical stimulation was developed for treating individuals with iSCI in this pilot case study. First, a novel PANS system with multiple stimulation modes was designed and verified with resistors and a metal coil as load. Then, the system was applied to three individuals with iSCI, and five types of paired associative stimulation was performed to confirm the feasibility of the system and determine the most effective treatment strategy. The preliminary result showed that 20-Hz rTMS combined with cathodal trans-spinal direct current stimulation (tsDCS) had the greatest effect on corticospinal excitability. Next, stimulations of 20-Hz rTMS (brain) and sham (spine) as well as sham (brain) and cathode tsDCS (spine) were administered to individuals with iSCI, and the results revealed that paired associative stimulation of brain and spine was more effective than only 20-Hz rTMS brain stimulation or cathodal tsDCS stimulation for corticospinal plasticity.
Collapse
|
5
|
Balbinot G, Li G, Wiest MJ, Pakosh M, Furlan JC, Kalsi-Ryan S, Zariffa J. Properties of the surface electromyogram following traumatic spinal cord injury: a scoping review. J Neuroeng Rehabil 2021; 18:105. [PMID: 34187509 PMCID: PMC8244234 DOI: 10.1186/s12984-021-00888-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic spinal cord injury (SCI) disrupts spinal and supraspinal pathways, and this process is reflected in changes in surface electromyography (sEMG). sEMG is an informative complement to current clinical testing and can capture the residual motor command in great detail-including in muscles below the level of injury with seemingly absent motor activities. In this comprehensive review, we sought to describe how the sEMG properties are changed after SCI. We conducted a systematic literature search followed by a narrative review focusing on sEMG analysis techniques and signal properties post-SCI. We found that early reports were mostly focused on the qualitative analysis of sEMG patterns and evolved to semi-quantitative scores and a more detailed amplitude-based quantification. Nonetheless, recent studies are still constrained to an amplitude-based analysis of the sEMG, and there are opportunities to more broadly characterize the time- and frequency-domain properties of the signal as well as to take fuller advantage of high-density EMG techniques. We recommend the incorporation of a broader range of signal properties into the neurophysiological assessment post-SCI and the development of a greater understanding of the relation between these sEMG properties and underlying physiology. Enhanced sEMG analysis could contribute to a more complete description of the effects of SCI on upper and lower motor neuron function and their interactions, and also assist in understanding the mechanisms of change following neuromodulation or exercise therapy.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Guijin Li
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Matheus Joner Wiest
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Julio Cesar Furlan
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Canada
- Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Jose Zariffa
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Hope JM, Koter RZ, Estes SP, Field-Fote EC. Disrupted Ankle Control and Spasticity in Persons With Spinal Cord Injury: The Association Between Neurophysiologic Measures and Function. A Scoping Review. Front Neurol 2020; 11:166. [PMID: 32218765 PMCID: PMC7078326 DOI: 10.3389/fneur.2020.00166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/21/2020] [Indexed: 12/03/2022] Open
Abstract
Control of muscles about the ankle joint is an important component of locomotion and balance that is negatively impacted by spinal cord injury (SCI). Volitional control of the ankle dorsiflexors (DF) is impaired by damage to pathways descending from supraspinal centers. Concurrently, spasticity arising from disrupted organization of spinal reflex circuits, further erodes control. The association between neurophysiological changes (corticospinal and spinal) with volitional ankle control (VAC) and spasticity remains unclear. The goal of this scoping review was to synthesize what is known about how changes in corticospinal transmission and spinal reflex excitability contribute to disrupted ankle control after SCI. We followed published guidelines for conducting a scoping review, appraising studies that contained a measure of corticospinal transmission and/or spinal reflex excitability paired with a measure of VAC and/or spasticity. We examined studies for evidence of a relationship between neurophysiological measures (either corticospinal tract transmission or spinal reflex excitability) with VAC and/or spasticity. Of 1,538 records identified, 17 studies were included in the review. Ten of 17 studies investigated spinal reflex excitability, while 7/17 assessed corticospinal tract transmission. Four of the 10 spinal reflex studies examined VAC, while 9/10 examined ankle spasticity. The corticospinal tract transmission studies examined only VAC. While current evidence suggests there is a relationship between neurophysiological measures and ankle function after SCI, more studies are needed. Understanding the relationship between neurophysiology and ankle function is important for advancing therapeutic outcomes after SCI. Future studies to capture an array of corticospinal, spinal, and functional measures are warranted.
Collapse
Affiliation(s)
- Jasmine M Hope
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States.,Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Ryan Z Koter
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
| | - Stephen P Estes
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute, Atlanta, GA, United States.,Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States.,Division of Physical Therapy, School of Medicine, Emory University, Atlanta, GA, United States.,Georgia Institute of Technology, School of Biological Sciences, Program in Applied Physiology, Atlanta, GA, United States
| |
Collapse
|
7
|
Lucci G, Pisotta I, Berchicci M, Di Russo F, Bonavita J, Scivoletto G, Spinelli D, Molinari M. Proactive Cortical Control in Spinal Cord Injury Subjects with Paraplegia. J Neurotrauma 2019; 36:3347-3355. [DOI: 10.1089/neu.2018.6307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Giuliana Lucci
- Electrophysiology of Cognition Lab and Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Iolanda Pisotta
- SPInal REhabilitation Lab–SPIRE, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Marika Berchicci
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico,” Rome, Italy
| | - Francesco Di Russo
- Electrophysiology of Cognition Lab and Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico,” Rome, Italy
| | - Jacopo Bonavita
- Spinal Unit, Montecatone Rehabilitation Institute, Imola (Bologna), Italy
| | - Giorgio Scivoletto
- SPInal REhabilitation Lab–SPIRE, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Donatella Spinelli
- Electrophysiology of Cognition Lab and Fondazione Santa Lucia IRCCS, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico,” Rome, Italy
| | - Marco Molinari
- SPInal REhabilitation Lab–SPIRE, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
8
|
Capelari TV, Borin JS, Grigol M, Saccani R, Zardo F, Cechetti F. EVALUATION OF MUSCLE STRENGTH IN MEDULLAR INJURY: A LITERATURE REVIEW. COLUNA/COLUMNA 2017. [DOI: 10.1590/s1808-185120171604179802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Objective: To identify the tools used to evaluate muscle strength in subjects with spinal cord injury in both clinical practice and scientific research. Methods: Initially, the literature review was carried out to identify the tools used in scientific research. The search was conducted in the following databases: Virtual Health Library (VHL), Pedro, and PubMed. Studies published between 1990 and 2016 were considered and selected, depicting an evaluation of muscle strength as an endpoint or for characterization of the sample. Next, a survey was carried out with physiotherapists to identify the instruments used for evaluation in clinical practice, and the degree of satisfaction of professionals with respect to them. Results: 495 studies were found; 93 were included for qualitative evaluation. In the studies, we verified the use of manual muscle test with different graduation systems, isokinetic dynamometer, hand-held dynamometer, and manual dynamometer. In clinical practice, the manual muscle test using the motor score recommended by the American Spinal Cord Injury Association was the most used method, despite the limitations highlighted by the physiotherapists interviewed. Conclusion: In scientific research, there is great variation in the methods and tools used to evaluate muscle strength in individuals with spinal cord injury, differently from clinical practice. The tools available and currently used have important limitations, which were highlighted by the professionals interviewed. No instrument depicts direct relationship of muscle strength and functionality of the subject. There is no consensus as to the best method for assessing muscle strength in spinal cord injury, and new instruments are needed that are specific for use in this population.
Collapse
Affiliation(s)
| | | | - Melissa Grigol
- Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | | | - Franciele Zardo
- Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Fernanda Cechetti
- Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil; Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| |
Collapse
|
9
|
Federico P, Perez MA. Altered corticospinal function during movement preparation in humans with spinal cord injury. J Physiol 2016; 595:233-245. [PMID: 27485306 DOI: 10.1113/jp272266] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/25/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In uninjured humans, transmission in the corticospinal pathway changes in a task-dependent manner during movement preparation. We investigated whether this ability is preserved in humans with incomplete chronic cervical spinal cord injury (SCI). Our results show that corticospinal excitability is altered in the preparatory phase of an upcoming movement when there is a need to suppress but not to execute rapid index finger voluntary contractions in individuals with SCI compared with controls. This is probably related to impaired transmission at a cortical and spinal level after SCI. Overall our findings indicate that deficits in corticospinal transmission in humans with chronic incomplete SCI are also present in the preparatory phase of upcoming movements. ABSTRACT Corticospinal output is modulated in a task-dependent manner during the preparatory phase of upcoming movements in humans. Whether this ability is preserved after spinal cord injury (SCI) is unknown. In this study, we examined motor evoked potentials elicited by cortical (MEPs) and subcortical (CMEPs) stimulation of corticospinal axons and short-interval intracortical inhibition in the first dorsal interosseous muscle in the preparatory phase of a reaction time task where individuals with chronic incomplete cervical SCI and age-matched controls needed to suppress (NOGO) or initiate (GO) ballistic index finger isometric voluntary contractions. Reaction times were prolonged in SCI participants compared with control subjects and stimulation was provided ∼90 ms prior to movement onset in each group. During NOGO trials, both MEPs and CMEPs remained unchanged compared to baseline in SCI participants but were suppressed in control subjects. Notably, during GO trials, MEPs increased to a similar extent in both groups but CMEPs increased only in controls. The magnitude of short-interval intracortical inhibition increased in controls but not in SCI subjects during NOGO trials and decreased in both groups in GO trials. These novel observations reveal that humans with incomplete cervical SCI have an altered ability to modulate corticospinal excitability during movement preparation when there is a need to suppress but not to execute upcoming rapid finger movements, which is probably related to impaired transmission at a cortical and spinal level. Thus, deficits in corticospinal transmission after human SCI extend to the preparatory phase of upcoming movements.
Collapse
Affiliation(s)
- Paolo Federico
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| | - Monica A Perez
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
| |
Collapse
|
10
|
Cremoux S, Tallet J, Berton E, Dal Maso F, Amarantini D. Motor-related cortical activity after cervical spinal cord injury: multifaceted EEG analysis of isometric elbow flexion contractions. Brain Res 2013; 1533:44-51. [PMID: 23939224 DOI: 10.1016/j.brainres.2013.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 10/26/2022]
Abstract
Electroencephalographic (EEG) studies have well established that motor cortex (M1) activity ~20 Hz decreases during muscular contraction and increases as soon as contraction stops, which are known as event-related desynchronization (ERD) and event-related synchronization (ERS), respectively. ERD is supposed to reflect M1 activation, sending information to recruited muscles, while the process underlying ERS is interpreted either as active cortical inhibition or as processing of sensory inputs. Investigation of the process behind ERD/ERS in people with spinal cord injury (SCI) would be particularly relevant since their M1 remains effective despite decreased sensorimotor abilities. In this study, we recorded net joint torque and EEG in 6 participants with cervical SCI and 8 healthy participants who performed isometric elbow flexion at 3 force levels. Multifaceted EEG analysis was introduced to assess ERD/ERS according to their amplitude, frequency range and duration. The results revealed that net joint torque increased with the required force level for all participants and time to contraction inhibition was longer in the SCI group. At the cortical level, ERD/ERS frequency ranges increased with the required force level in all participants, indicating that the modulation of cortical activity with force level is preserved after SCI. However, ERS amplitude decreased only in SCI participants, which may be linked to delayed contraction inhibition. All in all, cortical modulation of frequency range and amplitude could reflect two different kinds of neural communication.
Collapse
Affiliation(s)
- Sylvain Cremoux
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France.
| | | | | | | | | |
Collapse
|