1
|
Hodgkiss DD, Balthazaar SJT, Welch JF, Wadley AJ, Cox PA, Lucas RAI, Veldhuijzen van Zanten JJCS, Chiou SY, Lucas SJE, Nightingale TE. Short- and long-term effects of transcutaneous spinal cord stimulation on autonomic cardiovascular control and arm-crank exercise capacity in individuals with a spinal cord injury (STIMEX-SCI): study protocol. BMJ Open 2025; 15:e089756. [PMID: 39819908 PMCID: PMC11751795 DOI: 10.1136/bmjopen-2024-089756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/07/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025] Open
Abstract
INTRODUCTION Individuals with higher neurological levels of spinal cord injury (SCI) at or above the sixth thoracic segment (≥T6), exhibit impaired resting cardiovascular control and responses during upper-body exercise. Over time, impaired cardiovascular control predisposes individuals to lower cardiorespiratory fitness and thus a greater risk for cardiovascular disease and mortality. Non-invasive transcutaneous spinal cord stimulation (TSCS) has been shown to modulate cardiovascular responses at rest in individuals with SCI, yet its effectiveness to enhance exercise performance acutely, or promote superior physiological adaptations to exercise following an intervention, in an adequately powered cohort is unknown. Therefore, this study aims to explore the efficacy of acute TSCS for restoring autonomic function at rest and during arm-crank exercise to exhaustion (AIM 1) and investigate its longer-term impact on cardiorespiratory fitness and its concomitant benefits on cardiometabolic health and health-related quality of life (HRQoL) outcomes following an 8-week exercise intervention (AIM 2). METHODS AND ANALYSIS Sixteen individuals aged ≥16 years with a chronic, motor-complete SCI between the fifth cervical and sixth thoracic segments will undergo a baseline TSCS mapping session followed by an autonomic nervous system (ANS) stress test battery, with and without cardiovascular-optimised TSCS (CV-TSCS). Participants will then perform acute, single-session arm-crank exercise (ACE) trials to exhaustion with CV-TSCS or sham TSCS (SHAM-TSCS) in a randomised order. Twelve healthy, age- and sex-matched non-injured control participants will be recruited and will undergo the same ANS tests and exercise trials but without TSCS. Thereafter, the SCI cohort will be randomly assigned to an experimental (CV-TSCS+ACE) or control (SHAM-TSCS+ACE) group. All participants will perform 48 min of ACE twice per week (at workloads corresponding to 73-79% peak oxygen uptake), over a period of 8 weeks, either with (CV-TSCS) or without (SHAM-TSCS) cardiovascular-optimised stimulation. The primary outcomes are time to exhaustion (AIM 1) and cardiorespiratory fitness (AIM 2). Secondary outcomes for AIM 1 include arterial blood pressure, respiratory function, cerebral blood velocity, skeletal muscle tissue oxygenation, along with concentrations of catecholamines, brain-derived neurotrophic factor and immune cell dynamics via venous blood sampling pre, post and 90 min post-exercise. Secondary outcomes for AIM 2 include cardiometabolic health biomarkers, cardiac function, arterial stiffness, 24-hour blood pressure lability, energy expenditure, respiratory function, neural drive to respiratory muscles, seated balance and HRQoL (eg, bowel, bladder and sexual function). Outcome measures will be assessed at baseline, pre-intervention, post-intervention and after a 6-week follow-up period (HRQoL questionnaires only). ETHICS AND DISSEMINATION Ethical approval has been obtained from the Wales Research Ethics Committee 7 (23/WA/0284; 03/11/2024). The recruitment process began in February 2024, with the first enrolment in July 2024. Recruitment is expected to be completed by January 2026. The results will be presented at international SCI and sport-medicine conferences and will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ISRCTN17856698.
Collapse
Affiliation(s)
- Daniel D Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Shane J T Balthazaar
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph F Welch
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alex J Wadley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Phoebe A Cox
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jet J C S Veldhuijzen van Zanten
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Shin-Yi Chiou
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Tom E Nightingale
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
- International Collaboration On Repair Discoveries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Samejima S, Shackleton C, Miller T, Moritz CT, Kessler TM, Krogh K, Sachdeva R, Krassioukov AV. Mapping the Iceberg of Autonomic Recovery: Mechanistic Underpinnings of Neuromodulation following Spinal Cord Injury. Neuroscientist 2024; 30:378-389. [PMID: 36631741 PMCID: PMC11107126 DOI: 10.1177/10738584221145570] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
Spinal cord injury leads to disruption in autonomic control resulting in cardiovascular, bowel, and lower urinary tract dysfunctions, all of which significantly reduce health-related quality of life. Although spinal cord stimulation shows promise for promoting autonomic recovery, the underlying mechanisms are unclear. Based on current preclinical and clinical evidence, this narrative review provides the most plausible mechanisms underlying the effects of spinal cord stimulation for autonomic recovery, including activation of the somatoautonomic reflex and induction of neuroplastic changes in the spinal cord. Areas where evidence is limited are highlighted in an effort to guide the scientific community to further explore these mechanisms and advance the clinical translation of spinal cord stimulation for autonomic recovery.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Chet T. Moritz
- Departments of Electrical and Computer Engineering, Rehabilitation Medicine, and Physiology and Biophysics and the Center for Neurotechnology, University of Washington, Seattle, WA, USA
| | - Thomas M. Kessler
- Department of Neuro-urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland
| | - Klaus Krogh
- Department of Clinical Medicine and Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Andrei V. Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
- Spinal Cord Program, GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, Canada
| |
Collapse
|
3
|
Moreno Romero GN, Twyman AR, Bandres MF, McPherson JG. Unintentionally intentional: unintended effects of spinal stimulation as a platform for multi-modal neurorehabilitation after spinal cord injury. Bioelectron Med 2024; 10:12. [PMID: 38745334 PMCID: PMC11094943 DOI: 10.1186/s42234-024-00144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Electrical stimulation of spinal neurons has emerged as a valuable tool to enhance rehabilitation after spinal cord injury. In separate parameterizations, it has shown promise for improving voluntary movement, reducing symptoms of autonomic dysreflexia, improving functions mediated by muscles of the pelvic floor (e.g., bowel, bladder, and sexual function), reducing spasms and spasticity, and decreasing neuropathic pain, among others. This diverse set of actions is related both to the density of sensorimotor neural networks in the spinal cord and to the intrinsic ability of electrical stimulation to modulate neural transmission in multiple spinal networks simultaneously. It also suggests that certain spinal stimulation parameterizations may be capable of providing multi-modal therapeutic benefits, which would directly address the complex, multi-faceted rehabilitation goals of people living with spinal cord injury. This review is intended to identify and characterize reports of spinal stimulation-based therapies specifically designed to provide multi-modal benefits and those that report relevant unintended effects of spinal stimulation paradigms parameterized to enhance a single consequence of spinal cord injury.
Collapse
Affiliation(s)
- Gerson N Moreno Romero
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avery R Twyman
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Maria F Bandres
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Graves McPherson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA.
- Program in Neurosciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
4
|
Chalif JI, Chavarro VS, Mensah E, Johnston B, Fields DP, Chalif EJ, Chiang M, Sutton O, Yong R, Trumbower R, Lu Y. Epidural Spinal Cord Stimulation for Spinal Cord Injury in Humans: A Systematic Review. J Clin Med 2024; 13:1090. [PMID: 38398403 PMCID: PMC10889415 DOI: 10.3390/jcm13041090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Spinal cord injury (SCI) represents a major health challenge, often leading to significant and permanent sensorimotor and autonomic dysfunctions. This study reviews the evolving role of epidural spinal cord stimulation (eSCS) in treating chronic SCI, focusing on its efficacy and safety. The objective was to analyze how eSCS contributes to the recovery of neurological functions in SCI patients. (2) Methods: We utilized the PRISMA guidelines and performed a comprehensive search across MEDLINE/PubMed, Embase, Web of Science, and IEEE Xplore databases up until September 2023. We identified studies relevant to eSCS in SCI and extracted assessments of locomotor, cardiovascular, pulmonary, and genitourinary functions. (3) Results: A total of 64 studies encompassing 306 patients were identified. Studies investigated various stimulation devices, parameters, and rehabilitation methods. Results indicated significant improvements in motor function: 44% of patients achieved assisted or independent stepping or standing; 87% showed enhanced muscle activity; 65% experienced faster walking speeds; and 80% improved in overground walking. Additionally, eSCS led to better autonomic function, evidenced by improvements in bladder and sexual functions, airway pressures, and bowel movements. Notable adverse effects included device migration, infections, and post-implant autonomic dysreflexia, although these were infrequent. (4) Conclusion: Epidural spinal cord stimulation is emerging as an effective and generally safe treatment for chronic SCI, particularly when combined with intensive physical rehabilitation. Future research on standardized stimulation parameters and well-defined therapy regimens will optimize benefits for specific patient populations.
Collapse
Affiliation(s)
- J. I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - V. S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - E. Mensah
- Chan School of Public Health, Harvard University, Boston, MA 02115, USA;
| | - B. Johnston
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - D. P. Fields
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - E. J. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| | - M. Chiang
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - O. Sutton
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Yong
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Anesthesiology Perioperative and Pain Management, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - R. Trumbower
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
- Department of Physical Medicine and Rehabilitation, Spaulding Hospital Cambridge, Cambridge, MA 02115, USA
| | - Y. Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (J.I.C.); (V.S.C.); (B.J.)
- Harvard Medical School, Boston, MA 02115, USA; (M.C.); (R.Y.); (R.T.)
| |
Collapse
|
5
|
DiMarco AF, Geertman RT, Nemunaitis GA, Kowalski KE. Impact of the cough stimulation system on the care burden and life quality of caregivers of tetraplegics. J Spinal Cord Med 2023; 46:778-788. [PMID: 37017634 PMCID: PMC10446787 DOI: 10.1080/10790268.2022.2148845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVES To determine caregiver burden and quality of life of primary family caregivers of participants with cervical SCI before and after use of the cough stimulation system (CSS). DESIGN Prospective assessment at four timepoints via questionnaire responses. SETTING Out-patient hospital, United States. PARTICIPANTS 15 primary family caregivers of participants with cervical SCI completed questionnaires including a respiratory care burden index (n = 15) and a commonly employed caregiver burden inventory (n = 9), before and at the 6-month, 1-year and 2-year timepoints following use of the CSS. RESULTS SCI participants had significant clinical improvements in terms of restoration of an effective cough and ability to manage airway secretions with use of the CSS. Restoration of expiratory muscle function with use of the CSS also resulted in less caregivers (CG) stress, greater control of their participants' breathing problems, and improvement in quality of life. Results of the caregiver burden inventory demonstrated marked reductions in caregiver burden in development items, physical health and social relationship. Overall caregiver burden fell from 43.4 ± 13.8 pre-implant to 32.4 ± 7.9 (P = 0.06), 31.7 ± 10.5 (P = 0.05), and 26.5 ± 9.3 (P = 0.01) at the 6-month, 1-year and 2-year timepoints. CONCLUSION Use of the CSS by cervical SCI participants results in restoration of an effective cough with significant clinical benefits. While caregiver burden is very high in primary family caregivers, they derive marked improvement in caregiver burden and quality of life with implementation of this device.Trial registration: ClinicalTrials.gov identifier: NCT00116337.Trial registration: ClinicalTrials.gov identifier: NCT01659541.
Collapse
Affiliation(s)
- Anthony F. DiMarco
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Research, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert T. Geertman
- Department of Neurosurgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gregory A. Nemunaitis
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, Ohio, USA
| | - Krzysztof E. Kowalski
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Research, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Samejima S, Shackleton C, Malik RN, Cao K, Bohorquez A, Nightingale TE, Sachdeva R, Krassioukov AV. Spinal Cord Stimulation Prevents Autonomic Dysreflexia in Individuals with Spinal Cord Injury: A Case Series. J Clin Med 2023; 12:jcm12082897. [PMID: 37109234 PMCID: PMC10146034 DOI: 10.3390/jcm12082897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Spinal cord injury (SCI) results in severe cardiovascular dysfunction due to the disruption of supraspinal control. Autonomic dysreflexia (AD), an uncontrolled rise in blood pressure in response to peripheral stimuli including common bowel routine, digital anorectal stimulation (DARS), reduces the quality of life, and increases morbidity and mortality. Recently, spinal cord stimulation (SCS) has emerged as a potential intervention to mitigate unstable blood pressure following SCI. The objective of this case series was to test the real-time effect of epidural SCS (eSCS) at the lumbosacral spinal cord, the most common implant location, on mitigating AD in individuals with SCI. We recruited three individuals with cervical and upper thoracic motor-complete SCI who have an implanted epidural stimulator. We demonstrated that eSCS can reduce the elevation in blood pressure and prevent DARS-induced AD. The blood pressure variability analysis indicated that eSCS potentially reduced vascular sympathetic nervous system activity during DARS, compared to without eSCS. This case series provides evidence to support the use of eSCS to prevent AD episodes during routine bowel procedures, improving the quality of life for individuals with SCI and potentially reducing cardiovascular risks.
Collapse
Affiliation(s)
- Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 2G9, Canada
| | - Claire Shackleton
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 2G9, Canada
| | - Raza N Malik
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 2G9, Canada
| | - Kawami Cao
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 2G9, Canada
| | - Anibal Bohorquez
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 2G9, Canada
- Spinal Cord Program, GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC V5Z 2G9, Canada
| | - Tom E Nightingale
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 2G9, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC V5Z 2G9, Canada
- Spinal Cord Program, GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC V5Z 2G9, Canada
| |
Collapse
|
7
|
Shackleton C, Samejima S, Miller T, Sachdeva R, Parr A, Samadani U, Netoff T, Hocaloski S, Elliott S, Walter M, Darrow D, Krassioukov A. Effect of epidural spinal cord stimulation on female sexual function after spinal cord injury. Front Neurosci 2023; 17:1155796. [PMID: 37179555 PMCID: PMC10167769 DOI: 10.3389/fnins.2023.1155796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
Sexual dysfunction is a common consequence for women with spinal cord injury (SCI); however, current treatments are ineffective, especially in the under-prioritized population of women with SCI. This case-series, a secondary analysis of the Epidural Stimulation After Neurologic Damage (E-STAND) clinical trial aimed to investigate the effect of epidural spinal cord stimulation (ESCS) on sexual function and distress in women with SCI. Three females, with chronic, thoracic, sensorimotor complete SCI received daily (24 h/day) tonic ESCS for 13 months. Questionnaires, including the Female Sexual Function Index (FSFI) and Female Sexual Distress Scale (FSDS) were collected monthly. There was a 3.2-point (13.2%) mean increase in total FSFI from baseline (24.5 ± 4.1) to post-intervention (27.8 ± 6.6), with a 4.8-50% improvement in the sub-domains of desire, arousal, orgasm and satisfaction. Sexual distress was reduced by 55%, with a mean decrease of 12 points (55.4%) from baseline (21.7 ± 17.2) to post-intervention (9.7 ± 10.8). There was a clinically meaningful change of 14 points in the International Standards for Neurological Classification of Spinal Cord Injury total sensory score from baseline (102 ± 10.5) to post-intervention (116 ± 17.4), without aggravating dyspareunia. ESCS is a promising treatment for sexual dysfunction and distress in women with severe SCI. Developing therapeutic interventions for sexual function is one of the most meaningful recovery targets for people with SCI. Additional large-scale investigations are needed to understand the long-term safety and feasibility of ESCS as a viable therapy for sexual dysfunction. Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT03026816, NCT03026816.
Collapse
Affiliation(s)
- Claire Shackleton
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ann Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, United States
- Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, United States
| | - Theoden Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Shea Hocaloski
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Stacy Elliott
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
- Department of Psychiatry, Vancouver Coastal Health Authority, Vancouver, BC, Canada
- Department of Urologic Sciences, Vancouver Coastal Health Authority, Vancouver, BC, Canada
| | - Matthias Walter
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
- Hennepin County Medical Center, Minneapolis, MN, United States
| | - Andrei Krassioukov
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
8
|
Respiratory Complications and Weaning Considerations for Patients with Spinal Cord Injuries: A Narrative Review. J Pers Med 2022; 13:jpm13010097. [PMID: 36675758 PMCID: PMC9861966 DOI: 10.3390/jpm13010097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Respiratory complications following traumatic spinal cord injury are common and are associated with high morbidity and mortality. The inability to cough and clear secretions coupled with weakened respiratory and abdominal muscles commonly leads to respiratory failure, pulmonary edema, and pneumonia. Higher level and severity of the spinal cord injury, history of underlying lung pathology, history of smoking, and poor baseline health status are potential predictors for patients that will experience respiratory complications. For patients who may require prolonged intubation, early tracheostomy has been shown to lead to improved outcomes. Prediction models to aid clinicians with the decision and timing of tracheostomy have been shown to be successful but require larger validation studies in the future. Mechanical ventilation weaning strategies also require further investigation but should focus on a combination of optimizing ventilator setting, pulmonary toilet techniques, psychosocial well-being, and an aggressive bowel regimen.
Collapse
|
9
|
Samejima S, Shackleton C, McCracken L, Malik RN, Miller T, Kavanagh A, Ghuman A, Elliott S, Walter M, Nightingale TE, Berger MJ, Lam T, Sachdeva R, Krassioukov AV. Effects of non-invasive spinal cord stimulation on lower urinary tract, bowel, and sexual functions in individuals with chronic motor-complete spinal cord injury: Protocol for a pilot clinical trial. PLoS One 2022; 17:e0278425. [PMID: 36512558 PMCID: PMC9746997 DOI: 10.1371/journal.pone.0278425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Electrical spinal cord neuromodulation has emerged as a leading intervention for restoring autonomic functions, such as blood pressure, lower urinary tract (LUT), bowel, and sexual functions, following spinal cord injury (SCI). While a few preliminary studies have shown the potential effect of non-invasive transcutaneous spinal cord stimulation (tSCS) on autonomic recovery following SCI, the optimal stimulation parameters, as well as real-time and long-term functional benefits of tSCS are understudied. This trial entitled "Non-invasive Neuromodulation to Treat Bladder, Bowel, and Sexual Dysfunction following Spinal Cord Injury" is a pilot trial to examine the feasibility, dosage effect and safety of tSCS on pelvic organ function for future large-scale randomized controlled trials. METHODS AND ANALYSIS Forty eligible participants with chronic cervical or upper thoracic motor-complete SCI will undergo stimulation mapping and assessment batteries to determine the real-time effect of tSCS on autonomic functions. Thereafter, participants will be randomly assigned to either moderate or intensive tSCS groups to test the dosage effect of long-term stimulation on autonomic parameters. Participants in each group will receive 60 minutes of tSCS per session either twice (moderate) or five (intensive) times per week, over a period of six weeks. Outcome measures include: (a) changes in bladder capacity through urodynamic studies during real-time and after long-term tSCS, and (b) resting anorectal pressure determined via anorectal manometry during real-time tSCS. We also measure assessments of sexual function, neurological impairments, and health-related quality of life using validated questionnaires and semi-structured interviews. ETHICS AND DISSEMINATION Ethical approval has been obtained (CREB H20-01163). All primary and secondary outcome data will be submitted to peer-reviewed journals and disseminated among the broader scientific community and stakeholders.
Collapse
Affiliation(s)
- Soshi Samejima
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Claire Shackleton
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Laura McCracken
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Raza N. Malik
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Tiev Miller
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alex Kavanagh
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Amandeep Ghuman
- Department of Surgery, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Stacy Elliott
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Walter
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tom E. Nightingale
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael J. Berger
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Tania Lam
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Rahul Sachdeva
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Andrei V. Krassioukov
- Faculty of Medicine, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- GF Strong Rehabilitation Centre, Vancouver Coastal Health, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
10
|
Allen GM, Palermo AE, McNaughton KMD, Boswell-Ruys CL, Lee BB, Butler JE, Gandevia SC, McCaughey EJ. Effectiveness of Abdominal Functional Electrical Stimulation for Improving Bowel Function in People With a Spinal Cord Injury: A Study Protocol for a Double-Blinded Randomized Placebo-Controlled Clinical Trial. Top Spinal Cord Inj Rehabil 2022; 28:22-31. [PMID: 36457354 PMCID: PMC9678222 DOI: 10.46292/sci22-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
Background People with a spinal cord injury (SCI) have a high rate of bowel-related morbidity, even compared with people with other neurological disorders. These complications lower quality of life and place a financial burden on the health system. A noninvasive intervention that improves the bowel function of people with an SCI should reduce morbidity, improve quality of life, and lead to cost savings for health care providers. Objectives To investigate the effectiveness of noninvasive abdominal functional electrical stimulation (FES) for improving bowel function in people with a chronic SCI. Methods A prospective, double-blinded, 1:1 randomized, placebo-controlled intervention trial will be conducted with 80 adults with chronic SCI (>12 months since injury) above T8 single neurological level. The intervention will be a 45-minute abdominal FES (or placebo) session, 3 days per week, for 6 weeks. Main Study Parameters/Endpoints Primary endpoint is whole gut transit time before and after 6 weeks of abdominal FES. Secondary endpoints measured before and after 6 weeks of abdominal FES are (1) colonic transit time; (2) quality of life (EQ-5D-5L); (3) participant-reported bowel function (International SCI Bowel Function Basic Data Set Questionnaire and visual analogue scale); (4) respiratory function (forced vital capacity, forced expiratory volume in 1 second, peak expiratory flow, maximal inspiratory pressure, and maximal expiratory pressure); (5) bladder symptoms (Neurogenic Bladder Symptom Score); (6) daily bowel management diary; and (7) unplanned hospital visits. Conclusion Safety data will be collected, and a cost utility analysis using quality of life scores will be performed. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN12621000386831.
Collapse
Affiliation(s)
- Gabrielle M Allen
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Anne E Palermo
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Keith M D McNaughton
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Bonsan B Lee
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Prince of Wales Clinical School, University of New South Wales, Kensington, Australia
| | - Euan J McCaughey
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
- Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, Scotland
| |
Collapse
|
11
|
Shackleton C, Hodgkiss D, Samejima S, Miller T, Perez MA, Nightingale TE, Sachdeva R, Krassioukov AV. When the whole is greater than the sum of its parts: a scoping review of activity-based therapy paired with spinal cord stimulation following spinal cord injury. J Neurophysiol 2022; 128:1292-1306. [PMID: 36222423 DOI: 10.1152/jn.00367.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Spinal cord injury (SCI) results in both motor and autonomic impairments, which can negatively affect independence and quality of life and increase morbidity and mortality. Despite emerging evidence supporting the benefits of activity-based training and spinal cord stimulation as two distinct interventions for sensorimotor and autonomic recovery, the combined effects of these modalities are currently uncertain. This scoping review evaluated the effectiveness of paired interventions (exercise + spinal neuromodulation) for improving sensorimotor and autonomic functions in individuals with SCI. Four electronic databases were searched for peer-reviewed manuscripts (Medline, Embase, CINAHL, and EI-compedex Engineering Village) and data were independently extracted by two reviewers using pre-established extraction tables. A total of 15 studies representing 79 participants were included in the review, of which 73% were conducted within the past 5 years. Only two of the studies were randomized controlled studies, while the other 13 studies were case or case-series designs. Compared with activity-based training alone, spinal cord stimulation combined with activity-based training improved walking and voluntary muscle activation, and augmented improvements in lower urinary tract, bowel, resting metabolic rate, peak oxygen consumption, and thermoregulatory function. Spinal neuromodulation in combination with use-dependent therapies may provide greater neurorecovery and induce long-term benefits for both motor and autonomic function beyond the capacity of traditional activity-based therapies. However, evidence for combinational approaches is limited and there is no consensus for outcome measures or optimal protocol parameters, including stimulation settings. Future large-scale randomized trials into paired interventions are warranted to further investigate these preliminary findings.
Collapse
Affiliation(s)
- Claire Shackleton
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Hodgkiss
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Soshi Samejima
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tiev Miller
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Monica A Perez
- Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Shirley Ryan Ability Laboratory, Chicago, Illinois
- Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Thomas E Nightingale
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, United Kingdom
| | - Rahul Sachdeva
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Spinal Cord Program, GF Strong Rehabilitation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
DiMarco AF, Geertman RT, Nemunaitis GA, Kowalski KE. Effects of restoration of cough via spinal cord stimulation on subject quality of life. J Clin Orthop Trauma 2022; 34:102027. [PMID: 36212771 PMCID: PMC9535310 DOI: 10.1016/j.jcot.2022.102027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/06/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives To determine participant quality of life before and after use of the cough stimulation system (Cough System). Design Prospective assessment of life quality at 4 timepoints via questionnaire responses. Setting Out-patient hospital, United States. Participants 28 subjects with spinal cord injury (SCI) completed life quality assessment questionnaires before and at the 28- 40- and 52-week timepoints following use of the Cough System. Results Each subject demonstrated significant clinical improvements in terms of restoration of an effective cough and ability to manage airway secretions with use of the Cough System. Positive airway pressures and peak expiratory airflows approached values associated with a normal cough. Related to cough/secretion management, use of this system also resulted less interference with family life and daily activities, less financial difficulties, less requirement for caregiver assistance, less stress, less embarrassment and greater control of their breathing problems (p < 0.01), for each comparison). There also significant improvements in that their overall health and quality of life (p < 0.01, for each comparison). Subjects also reported greater ease in breathing, restored ability to sneeze and enhanced mobility. The incidence of acute respiratory tract infections fell from 1.3 ± 0.3 to 0.2 ± 0.1 events/subject year (p < 0.01). Ten subjects developed mild hemodynamic effects consistent with autonomic dysreflexia that abated completely with continued use of the Cough System. Some subjects experienced mild leg jerks during SCS, which were well tolerated and abated completely with reduction in stimulus amplitude, No subjects reported bowel or bladder leakage. Conclusion Use of the Cough System by SCI subjects is a safe and efficacious method which significantly improves life quality and has the potential to reduce the mortality and morbidity associated with SCI.
Collapse
Affiliation(s)
- Anthony F. DiMarco
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, MetroHealth Medical Center, Cleveland, OH, USA
- Department of Research, Case Western Reserve University, MetroHealth Medical Center, Cleveland, OH, USA
| | - Robert T. Geertman
- Department of Neurosurgery, Case Western Reserve University, MetroHealth Medical Center, Cleveland, OH, USA
| | - Gregory A. Nemunaitis
- Department of Physical Medicine and Rehabilitation, Cleveland Clinic, Cleveland, OH, USA
| | - Krzysztof E. Kowalski
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, MetroHealth Medical Center, Cleveland, OH, USA
- Department of Research, Case Western Reserve University, MetroHealth Medical Center, Cleveland, OH, USA
| |
Collapse
|
13
|
Lin A, Shaaya E, Calvert JS, Parker SR, Borton DA, Fridley JS. A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury. Neurospine 2022; 19:703-734. [PMID: 36203296 PMCID: PMC9537842 DOI: 10.14245/ns.2244652.326] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022] Open
Abstract
Traumatic spinal cord injury often leads to loss of sensory, motor, and autonomic function below the level of injury. Recent advancements in spinal cord electrical stimulation (SCS) for spinal cord injury have provided potential avenues for restoration of neurologic function in affected patients. This review aims to assess the efficacy of spinal cord stimulation, both epidural (eSCS) and transcutaneous (tSCS), on the return of function in individuals with chronic spinal cord injury. The current literature on human clinical eSCS and tSCS for spinal cord injury was reviewed. Seventy-one relevant studies were included for review, specifically examining changes in volitional movement, changes in muscle activity or spasticity, or return of cardiovascular pulmonary, or genitourinary autonomic function. The total participant sample comprised of 327 patients with spinal cord injury, each evaluated using different stimulation protocols, some for sensorimotor function and others for various autonomic functions. One hundred eight of 127 patients saw improvement in sensorimotor function, 51 of 70 patients saw improvement in autonomic genitourinary function, 32 of 32 patients saw improvement in autonomic pulmonary function, and 32 of 36 patients saw improvement in autonomic cardiovascular function. Although this review highlights SCS as a promising therapeutic neuromodulatory technique to improve rehabilitation in patients with SCI, further mechanistic studies and stimulus parameter optimization are necessary before clinical translation.
Collapse
Affiliation(s)
- Alice Lin
- Warren Alpert Medical School, Providence, RI, USA
| | - Elias Shaaya
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA
| | | | | | - David A. Borton
- School of Engineering, Brown University, Providence, RI, USA,Center for Neurorestoration and Neurotechnology, Department of Veterans Affairs, Providence, RI, USA,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jared S. Fridley
- Department of Neurosurgery, Brown University, Rhode Island Hospital, Providence, RI, USA,Corresponding Author Jared S. Fridley Department of Neurosurgery, Brown University, Rhode Island Hospital, 593 Eddy St # 1, Providence, RI 02903, USA
| |
Collapse
|
14
|
Mansour NM, Peña Pino I, Freeman D, Carrabre K, Venkatesh S, Darrow D, Samadani U, Parr AM. Advances in Epidural Spinal Cord Stimulation to Restore Function after Spinal Cord Injury: History and Systematic Review. J Neurotrauma 2022; 39:1015-1029. [PMID: 35403432 DOI: 10.1089/neu.2022.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.
Collapse
Affiliation(s)
- Nadine M Mansour
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Freeman
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kailey Carrabre
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shivani Venkatesh
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - David Darrow
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Uzma Samadani
- Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, VA Healthcare System, Minneapolis, Minnesota, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Laskin JJ, Waheed Z, Thorogood NP, Nightingale TE, Noonan VK. Spinal Cord Stimulation Research in the Restoration of Motor, Sensory, and Autonomic Function for Individuals Living With Spinal Cord Injuries: A Scoping Review. Arch Phys Med Rehabil 2022; 103:1387-1397. [PMID: 35202581 DOI: 10.1016/j.apmr.2022.01.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To describe the status of spinal cord stimulation (SCS) research for the improvement of motor, sensory, and autonomic function for individuals living with a spinal cord injury (SCI). DATA SOURCES This scoping review identified original research published before March 31, 2021, via literature searches using MEDLINE, Embase, PubMed, Science Direct, Cumulative Index to Nursing and Allied Health, Sport Discus, and Web of Science, as well as a targeted search for well-known principal investigators. Search terms included permutations of "spinal cord stimulation," "epidural spinal cord stimulation," "transcutaneous spinal cord stimulation," "magnetic spinal cord stimulation," and "neuromodulation." STUDY SELECTION Studies were included if they (1) were in English, (2) presented original research on humans living with a SCI, and (3) investigated at least 1 of the 3 forms of SCS. DATA EXTRACTION Extracted data included authors, publication year, participant characteristics, purpose, study design, stimulation (device, location, parameters), primary outcomes, and adverse events. DATA SYNTHESIS As a scoping review the extracted data were tabulated and presented descriptively. Themes and gaps in the literature were identified and reported. Of the 5754 articles screened, 103 articles were included (55 epidural, 36 transcutaneous, 12 magnetic). The primary research design was a case study or series with only a single randomized controlled trial. Motor recovery was the most common primary outcome for epidural and transcutaneous SCS studies, whereas bowel and bladder outcomes were most common for magnetic SCS studies. Seventy percent of the studies included 10 or fewer participants, and 18 articles documented at least 1 adverse event. Incomplete stimulation parameter descriptions were noted across many studies. No articles mentioned direct engagement of consumers or advocacy groups. CONCLUSIONS This review identified a need for more robust study designs, larger sample sizes, comparative studies, improved reporting of stimulation parameters, adverse event data, and alignment of outcomes with the priorities of the community with SCI.
Collapse
Affiliation(s)
- James J Laskin
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada; School of Physical Therapy and Rehabilitation Science, University of Montana, Missoula, Montana.
| | - Zeina Waheed
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada
| | | | - Tom E Nightingale
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada; School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom; Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Vanessa K Noonan
- Praxis Spinal Cord Institute, Vancouver, British Columbia, Canada; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Okita R, Okada M, Kawamoto N, Inokawa H, Osoreda H, Murakami T. Rapid development and rupture of a pneumatocele caused by pulmonary dissection in the early postoperative period of lung resection: a case report. AME Case Rep 2022; 6:6. [PMID: 35128314 PMCID: PMC8762382 DOI: 10.21037/acr-21-37] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/29/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2024]
Abstract
Air leakage after lung resection is a common complication usually caused by direct injury to the lung parenchyma. Herein we illustrate a case of pneumatocele that developed rapidly in the right middle lobe and ruptured 16 days after right upper lobectomy. A 73-year-old man with chronic obstructive pulmonary disease underwent thoracoscopic right upper lobectomy and partial thymectomy for primary lung cancer and thymic nodules, respectively. Although a small amount of air leakage was observed after the operation, air leakage completely improved on postoperative day (POD) 2, and the chest drain tube was removed on POD 3. The patient's condition was complicated with eosinophilic pneumonia. Steroid therapy was started on POD 13. Dyspnea suddenly developed immediately after defecation on POD 16. Computed tomography (CT) scan showed a large pneumatocele in the right middle lobe, which was not found by CT scan on POD 11. He underwent reoperation on POD 20, and a large thick-walled pneumatocele in the right middle lobe was directly sewn. Histopathologically, the wall of bulla consisted of thickened visceral pleura and thin lung parenchyma, suggesting that this pneumatocele was induced by dissection of subpleural lung parenchyma.
Collapse
Affiliation(s)
- Riki Okita
- Division of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Masanori Okada
- Division of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Nobutaka Kawamoto
- Division of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Hidetoshi Inokawa
- Division of Thoracic Surgery, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Hisayuki Osoreda
- Division of Respiratory Medicine, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Tomoyuki Murakami
- Division of Pathology, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
- Division of Pathology, National Hospital Organization Kanmon Medical Center, Shimonoseki, Japan
| |
Collapse
|