1
|
Okita S, Schwerz de Lucena D, Reinkensmeyer DJ. Movement Diversity and Complexity Increase as Arm Impairment Decreases After Stroke: Quality of Movement Experience as a Possible Target for Wearable Feedback. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2961-2970. [PMID: 39110555 PMCID: PMC11500827 DOI: 10.1109/tnsre.2024.3439669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Upper extremity (UE) impairment is common after stroke resulting in reduced arm use in daily life. A few studies have examined the use of wearable feedback of the quantity of arm movement to promote recovery, but with limited success. We posit that it may be more effective to encourage an increase in beneficial patterns of movement practice - i.e. the overall quality of the movement experience - rather than simply the overall amount of movement. As a first step toward testing this idea, here we sought to identify statistical features of the distributions of daily arm movements that become more prominent as arm impairment decreases, based on data obtained from a wrist IMU worn by 22 chronic stroke participants during their day. We identified several measures that increased as UE Fugl-Meyer (UEFM) score increased: the fraction of movements achieved at a higher speed, forearm postural diversity (quantified by kurtosis of the tilt-angle), and forearm postural complexity (quantified by sample entropy of tilt angle). Dividing participants into severe, moderate, and mild impairment groups, we found that forearm postural diversity and complexity were best able to distinguish the groups (Cohen's D =1.1, and 0.99, respectively) and were also the best subset of predictors for UEFM score. Based on these findings coupled with theories of motor learning that emphasize the importance of variety and challenge in practice, we suggest that using these measures of diversity and complexity in wearable rehabilitation could provide a basis to test whether the quality of the daily movement experience is therapeutic.
Collapse
|
2
|
Cain A, Winstein CJ, Demers M. The Perspectives of Individuals with Chronic Stroke on Motor Recovery: A Qualitative Analysis. Healthcare (Basel) 2024; 12:1523. [PMID: 39120226 PMCID: PMC11312011 DOI: 10.3390/healthcare12151523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The priorities of individuals with chronic stroke are not always reflected in clinical practice. This study provides insight into meaningful factors related to long-term motor recovery in stroke survivors. Thirty individuals with chronic stroke participated in semi-structured interviews about movement, recovery, and barriers to and facilitators of mobility and paretic arm use. The interviews were analyzed using inductive thematic analysis. Three categories, the individual, environment, and task, defined five emergent themes. Individual: (1) mindset is a strong and consistent influencer of daily physical activity and overall recovery; (2) severe physical impairment limits physical activity and recovery, regardless of other factors; and (3) a negative perception of disability impacts mindset and willingness to move in public. Environment: (4) social and physical environments influence physical activity and recovery. Task: (5) participation in meaningful activities increases physical activity and promotes long-term recovery. Strategies to incorporate paretic arm use, exercise, and encouragement from others facilitate physical activity. Insufficient paretic limb function, environmental obstacles, and fear are barriers to physical activity. Neurorehabilitation must address the factors that are meaningful to stroke survivors. Building motor capacity is essential and must be integrated with factors such as a positive mindset and proper environment. Individual differences reinforce the need for personalized care.
Collapse
Affiliation(s)
- Amelia Cain
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA;
| | - Carolee J. Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Marika Demers
- École de Réadaptation, Université de Montréal, Montreal, QC H3N 1X7, Canada;
- Institut Universitaire de Réadaptation en Déficience Physique de Montréal, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, CIUSSS Centre-Sud-de-l’Ile de Montréal, Montreal, QC H3S 1M9, Canada
| |
Collapse
|
3
|
Winterbottom L, Nilsen DM. Motor Learning Following Stroke: Mechanisms of Learning and Techniques to Augment Neuroplasticity. Phys Med Rehabil Clin N Am 2024; 35:277-291. [PMID: 38514218 DOI: 10.1016/j.pmr.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Sensorimotor impairments are common after stroke requiring stroke survivors to relearn lost motor skills or acquire new ones in order to engage in daily activities. Thus, motor skill learning is a cornerstone of stroke rehabilitation. This article provides an overview of motor control and learning theories that inform stroke rehabilitation interventions, discusses principles of neuroplasticity, and provides a summary of practice conditions and techniques that can be used to augment motor learning and neuroplasticity in stroke rehabilitation.
Collapse
Affiliation(s)
- Lauren Winterbottom
- Department of Rehabilitation & Regenerative Medicine, Columbia University, 180 Fort Washington Avenue, HP1, Suite 199, New York, NY 10032, USA; Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA.
| | - Dawn M Nilsen
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA; Department of Rehabilitation & Regenerative Medicine, Columbia University, 617 West 168th Street, 3rd Floor, Room 305, New York, NY 10032, USA
| |
Collapse
|
4
|
Wade DT. A general theory of rehabilitation: Rehabilitation catalyses and assists adaptation to illness. Clin Rehabil 2024; 38:429-442. [PMID: 37885405 PMCID: PMC10898207 DOI: 10.1177/02692155231210151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND There is no general theory of rehabilitation, only definitions and descriptions, with the biopsychosocial model of illness as a structure. OBJECTIVE To develop a general theory of rehabilitation that explains how healthcare rehabilitation changes outcomes and to evaluate its validity. NEED A general rehabilitation theory would help research, improve services, increase understanding, modify resource allocation and explain some anomalies, such as how rehabilitation helps when no natural recovery occurs. BUILDING BLOCKS People adapt to change throughout their lives. Illness is a change, and people adapt to their illness. Adaptation's purpose is to maintain an equilibrium in a person's life. The balanced components are related to Maslow's five needs: basic, safety, affiliation, status and self-fulfilment. The general theory of behaviour suggests that a person's behaviours change to maintain balance, regulated by a central homeostatic mechanism. THE THEORY Rehabilitation aids adaptation to changes associated with illness through accurate diagnosis and formulation, catalysing adaptation, optimising the environment and assisting the person in making necessary changes by safely practising activities and teaching self-management. IMPLICATIONS The theory makes the person the central active agent, emphasises the importance of the environment in facilitating adaptation, explains why all conditions may benefit, including progressive and static conditions, suggests that health can be equated to someone maintaining their equilibrium and explains why a small dose may be very effective. CONCLUSION The general theory of rehabilitation emphasises the catalytic effects of rehabilitation in facilitating and guiding adaptation and suggests areas for research and improvement.
Collapse
Affiliation(s)
- Derick T Wade
- Centre for Movement, Occupation and Rehabilitation Sciences (MOReS), Oxford Brookes University, Oxford, UK
| |
Collapse
|
5
|
Bayazeed A, Almalki G, Alnuaim A, Klem M, Sethi A. Factors Influencing Real-World Use of the More-Affected Upper Limb After Stroke: A Scoping Review. Am J Occup Ther 2024; 78:7802180250. [PMID: 38634670 DOI: 10.5014/ajot.2024.050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
IMPORTANCE Current interventions are limited in improving use of the more-affected upper limb in real-world daily occupations and functional independence poststroke. A comprehensive understanding of the factors influencing real-world upper limb use is required to develop interventions to improve functional independence poststroke. OBJECTIVE To systematically review the factors that influence real-world use of the more-affected upper limb poststroke. DATA SOURCES We searched MEDLINE, Embase, PsycINFO, and the Physiotherapy Evidence Database for English-language articles from 2012 to 2023. STUDY SELECTION AND DATA COLLECTION Of 774 studies, we included 33 studies that had participants at least age 18 yr who exhibited upper limb impairments poststroke, objectively measured real-world upper limb use using a movement sensor, and measured factors affecting upper limb use. Two reviewers independently screened the abstracts. FINDINGS The results were categorized by International Classification of Functioning, Disability and Health domains. Prominent factors were upper limb impairment; motor ability; functional independence; task type; hand dominance; stroke-related factors, including time since stroke; and perception of use of the more-affected upper limb. CONCLUSIONS AND RELEVANCE Existing interventions primarily focus on upper limb impairments and motor ability. Our findings suggest that interventions should also incorporate other factors: task type (unilateral vs. bilateral), hand dominance, self-efficacy, and perception of more-affected limb use as active ingredients in improving real-world use of the more-affected upper limb poststroke. We also provide recommendations to use behavioral activation theory in designing an occupation-focused intervention to augment self-efficacy and confidence in use of the more-affected upper limb in daily occupations. Plain-Language Summary: In order to develop interventions to improve functional independence poststroke, occupational therapy practitioners must have a comprehensive understanding of the factors that influence real-world more-affected upper limb use. The study findings provide a set of distinct factors that practitioners can target separately or in combination to improve real-world use of the more-affected upper limb poststroke.
Collapse
Affiliation(s)
- Anadil Bayazeed
- Anadil Bayazeed, MSOT, is PhD Candidate, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, and Teaching Assistant, Occupational Therapy Department, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia;
| | - Ghaleb Almalki
- Ghaleb Almalki, MSOT, is PhD Candidate, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, and Teaching Assistant, Occupational Therapy Department, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Amjad Alnuaim
- Amjad Alnuaim, MSc, is Teaching Assistant, Department of Occupational Therapy, King Saud University, Riyadh, Saudi Arabia. At the time of the study, Alnuaim was Master's Student, Occupational Therapy Department, University of Pittsburgh, Pittsburgh, PA
| | - Mary Klem
- Mary Klem, PhD, MLIS, is Assistant Director for Advanced Information Support, Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA
| | - Amit Sethi
- Amit Sethi, PhD, OTR/L, is Associate Professor, Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Oh Y, Choi SA, Shin Y, Jeong Y, Lim J, Kim S. Investigating Activity Recognition for Hemiparetic Stroke Patients Using Wearable Sensors: A Deep Learning Approach with Data Augmentation. SENSORS (BASEL, SWITZERLAND) 2023; 24:210. [PMID: 38203072 PMCID: PMC10781277 DOI: 10.3390/s24010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Measuring the daily use of an affected limb after hospital discharge is crucial for hemiparetic stroke rehabilitation. Classifying movements using non-intrusive wearable sensors provides context for arm use and is essential for the development of a home rehabilitation system. However, the movement classification of stroke patients poses unique challenges, including variability and sparsity. To address these challenges, we collected movement data from 15 hemiparetic stroke patients (Stroke group) and 29 non-disabled individuals (ND group). The participants performed two different tasks, the range of motion (14 movements) task and the activities of daily living (56 movements) task, wearing five inertial measurement units in a home setting. We trained a 1D convolutional neural network and evaluated its performance for different training groups: ND-only, Stroke-only, and ND and Stroke jointly. We further compared the model performance with data augmentation from axis rotation and investigated how the performance varied based on the asymmetry of movements. The joint training of ND + Stroke yielded an increased F1-score by a margin of 31.6% and 10.6% compared to ND-only training and Stroke-only training, respectively. Data augmentation further enhanced F1-scores across all conditions by an average of 11.3%. Finally, asymmetric movements decreased the F1-score by 25.9% compared to symmetric movements in the Stroke group, indicating the importance of asymmetry in movement classification.
Collapse
Affiliation(s)
- Youngmin Oh
- School of Computing, Gachon University, Seongnam 13120, Republic of Korea;
| | - Sol-A Choi
- Department of Physical Therapy, Jeonju University, Jeonju 55069, Republic of Korea; (S.-A.C.); (Y.S.); (Y.J.)
| | - Yumi Shin
- Department of Physical Therapy, Jeonju University, Jeonju 55069, Republic of Korea; (S.-A.C.); (Y.S.); (Y.J.)
| | - Yeonwoo Jeong
- Department of Physical Therapy, Jeonju University, Jeonju 55069, Republic of Korea; (S.-A.C.); (Y.S.); (Y.J.)
| | - Jongkuk Lim
- Department of Computer Engineering, Dankook University, Yongin 16890, Republic of Korea;
| | - Sujin Kim
- Department of Physical Therapy, Jeonju University, Jeonju 55069, Republic of Korea; (S.-A.C.); (Y.S.); (Y.J.)
| |
Collapse
|
7
|
Demers M, Cain A, Bishop L, Gunby T, Rowe JB, Zondervan DK, Winstein CJ. Understanding stroke survivors' preferences regarding wearable sensor feedback on functional movement: a mixed-methods study. J Neuroeng Rehabil 2023; 20:146. [PMID: 37915055 PMCID: PMC10621082 DOI: 10.1186/s12984-023-01271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND In stroke rehabilitation, wearable technology can be used as an intervention modality by providing timely, meaningful feedback on motor performance. Stroke survivors' preferences may offer a unique perspective on what metrics are intuitive, actionable, and meaningful to change behavior. However, few studies have identified feedback preferences from stroke survivors. This project aims to determine the ease of understanding and movement encouragement of feedback based on wearable sensor data (both arm/hand use and mobility) for stroke survivors and to identify preferences for feedback metrics (mode, content, frequency, and timing). METHODS A sample of 30 chronic stroke survivors wore a multi-sensor system in the natural environment over a 1-week monitoring period. The sensor system captured time in active movement of each arm, arm use ratio, step counts and stance time symmetry. Using the data from the monitoring period, participants were presented with a movement report with visual displays of feedback about arm/hand use, step counts and gait symmetry. A survey and qualitative interview were used to assess ease of understanding, actionability and components of feedback that users found most meaningful to drive lasting behavior change. RESULTS Arm/hand use and mobility sensor-derived feedback metrics were easy to understand and actionable. The preferred metric to encourage arm/hand use was the hourly arm use bar plot, and similarly the preferred metric to encourage mobility was the hourly steps bar plot, which were each ranked as top choice by 40% of participants. Participants perceived that quantitative (i.e., step counts) and qualitative (i.e., stance time symmetry) mobility metrics provided complementary information. Three main themes emerged from the qualitative analysis: (1) Motivation for behavior change, (2) Real-time feedback based on individual goals, and (3) Value of experienced clinicians for prescription and accountability. Participants stressed the importance of having feedback tailored to their own personalized goals and receiving guidance from clinicians on strategies to progress and increase functional movement behavior in the unsupervised home and community setting. CONCLUSION The resulting technology has the potential to integrate engineering and personalized rehabilitation to maximize participation in meaningful life activities outside clinical settings in a less structured environment.
Collapse
Affiliation(s)
- Marika Demers
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.
- School of Rehabilitation, University of Montreal, 7077 Ave. du Parc, Montreal, QC, H3N 1X7, Canada.
| | - Amelia Cain
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Lauri Bishop
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Tanisha Gunby
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | | | | | - Carolee J Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Demers M, Bishop L, Cain A, Saba J, Rowe J, Zondervan D, Winstein C. Wearable technology to capture arm use of stroke survivors in home and community settings: feasibility and early insights on motor performance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.25.23284790. [PMID: 36747651 PMCID: PMC9901039 DOI: 10.1101/2023.01.25.23284790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objective To establish short-term feasibility and usability of wrist-worn wearable sensors to capture arm/hand activity of stroke survivors and to explore the association between factors related to use of the paretic arm/hand. Methods 30 chronic stroke survivors were monitored with wrist-worn wearable sensors during 12h/day for a 7-day period. Participants also completed standardized assessments to capture stroke severity, arm motor impairments, self-perceived arm use and self-efficacy. Usability of the wearable sensors was assessed using the adapted System Usability Scale and an exit interview. Associations between motor performance and capacity (arm/hand impairments and activity limitations) were assessed using Spearman's correlations. Results Minimal technical issues or lack of adherence to the wearing schedule occurred, with 87.6% of days procuring valid data from both sensors. Average sensor wear time was 12.6 (standard deviation: 0.2) h/day. Three participants experienced discomfort with one of the wristbands and three other participants had unrelated adverse events. There were positive self-reported usability scores (mean: 85.4/100) and high user satisfaction. Significant correlations were observed for measures of motor capacity and self-efficacy with paretic arm use in the home and the community (Spearman's correlation ρs: 0.44-0.71). Conclusions This work demonstrates the feasibility and usability of a consumer-grade wearable sensor to capture paretic arm activity outside the laboratory. It provides early insight into stroke survivors' everyday arm use and related factors such as motor capacity and self-efficacy. Impact The integration of wearable technologies into clinical practice offers new possibilities to complement in-person clinical assessments and to better understand how each person is moving outside of therapy and throughout the recovery and reintegration phase. Insights gained from monitoring stroke survivors arm/hand use in the home and community is the first step towards informing future research with an emphasis on causal mechanisms with clinical relevance.
Collapse
Affiliation(s)
- Marika Demers
- School of Rehabilitation, Université de Montréal, Montreal (Qc), Canada
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Lauri Bishop
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Amelia Cain
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Joseph Saba
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Justin Rowe
- Flint Rehabilitation Devices, Irvine (CA), USA
| | | | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
9
|
Kim S, Shin Y, Jeong Y, Na S, Han CE. Autonomy support encourages use of more-affected arm post-stroke. J Neuroeng Rehabil 2023; 20:116. [PMID: 37679781 PMCID: PMC10483757 DOI: 10.1186/s12984-023-01238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Autonomy support, which involves providing individuals the ability to control their own behavior, is associated with improved motor control and learning in various populations in clinical and non-clinical settings. This study aimed to investigate whether autonomy support combined with an information technology (IT) device facilitated success in using the more-affected arm during training in individuals with stroke. Consequently, we examined whether increased success influenced the use of the more-affected arm in mild to moderate subacute to chronic stroke survivors. METHODS Twenty-six participants with stroke were assigned to the autonomy support or control groups. Over a 5-week period, training and test sessions were conducted using the Individualized Motivation Enhancement System (IMES), a device developed specifically for this study. In the autonomy support group, participants were able to adjust the task difficulty parameter, which controlled the time limit for reaching targets. The control group did not receive this option. The evaluation of the more-affected arm's use, performance, and impairment was conducted through clinical tests and the IMES. These data were then analyzed using mixed-effect models. RESULTS In the IMES test, both groups showed a significant improvement in performance (p < 0.0001) after the training period, without any significant intergroup differences (p > 0.05). However only the autonomy support group demonstrated a significant increase in the use of the more-affected arm following the training (p < 0.001). Additionally, during the training period, the autonomy support group showed a significant increase in successful experiences with using the more-affected arm (p < 0.0001), while the control group did not exhibit the same level of improvement (p > 0.05). Also, in the autonomy support group, the increase in the use of the more-affected arm was associated with the increase in the successful experience significantly (p = 0.007). CONCLUSIONS Combining autonomy support with an IT device is a practical approach for enhancing performance and promoting the use of the more-affected upper extremity post-stroke. Autonomy support facilitates the successful use of the more-affected arm, thereby increasing awareness of the training goal of maximizing its use. TRIAL REGISTRATION The study was registered retrospectively with the Clinical Research Information Service (KCT0008117; January 13, 2023; https://cris.nih.go.kr/cris/search/detailSearch.do/23875 ).
Collapse
Affiliation(s)
- Sujin Kim
- Department of Physical Therapy, Jeonju University, Jeonju, South Korea
| | - Yumi Shin
- Department of Physical Therapy, Jeonju University, Jeonju, South Korea
- Department of Rehabilitative and Assistive Technology, National Rehabilitation Center, Seoul, South Korea
| | - Yeonwoo Jeong
- Department of Physical Therapy, Jeonju University, Jeonju, South Korea
| | - Seungyoung Na
- Department of Rehabilitation and Medicine, Ongoul Rehabilitation Hospital, Jeonju, South Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, South Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, South Korea.
| |
Collapse
|
10
|
Yoshida T, Otaka Y, Kitamura S, Ushizawa K, Kumagai M, Yaeda J, Osu R. Influence of motivation on rehabilitation outcomes after subacute stroke in convalescent rehabilitation wards. Front Neurol 2023; 14:1185813. [PMID: 37521301 PMCID: PMC10375291 DOI: 10.3389/fneur.2023.1185813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Background The motivation for rehabilitation is important in encouraging stroke patients to participate in rehabilitation; however, its relationship with outcomes is not well known. In addition, changes in patient motivation during hospitalization have not been examined. Aim To examine the relationship between motivation and rehabilitation outcomes for subacute stroke patients and to investigate the changes in motivation. Design Prospective cohort study. Setting Subacute rehabilitation hospital. Population The study enrolled a consecutive sample of patients (n = 201) with stroke admitted to a subacute rehabilitation ward from October 2017 to March 2019. Methods The functional independence measure and motivation in stroke patients for rehabilitation scale was evaluated at admission; at one, two, and three months after admission; and at discharge. The effectiveness and efficiency of the functional independence measure were calculated as rehabilitation outcomes. The effect of motivation on outcomes and the change in motivation in stroke patients for rehabilitation scale scores over time were analyzed using a linear mixed model. Results The median (interquartile range) converted motivation in stroke patients for rehabilitation scale scores (converted to a range of 0-100) at admission; one, two, and three months after admission; and discharge was 86 (76-95), 83 (77-94), 81 (74-95), 81 (71-93), and 84 (75-95), respectively. The median (interquartile range) of effectiveness and efficiency of the functional independence measure from admission to discharge was 0.82 (0.68-0.91) and 0.41 (0.30-0.59), respectively. Motivation in stroke patients for rehabilitation scale scores were not significantly associated with the effectiveness and efficiency of the functional independence measure (p > 0.05). Motivation in stroke patients for rehabilitation scale scores were significantly lower at two (β = -3.1, 95% confidence interval [-5.3, -0.9], p = 0.005) and three (β = -4.4, 95% confidence interval [-7.3, -1.6], p = 0.002) months after admission than at admission. Conclusion Motivation might not directly affect rehabilitation outcomes assessed by the functional independence measure. Furthermore, many participants remained highly motivated, although their motivation decreased at one or three months after admission. Clinical rehabilitation impact Assumptions that rehabilitation is ineffective because of low motivation may not be correct. To examine the influence on outcomes, both motivation and daily activities should be considered.
Collapse
Affiliation(s)
- Taiki Yoshida
- Tokyo Bay Rehabilitation Hospital, Department of Rehabilitation Medicine, Chiba, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Yohei Otaka
- Tokyo Bay Rehabilitation Hospital, Department of Rehabilitation Medicine, Chiba, Japan
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, Aichi, Japan
| | - Shin Kitamura
- Tokyo Bay Rehabilitation Hospital, Department of Rehabilitation Medicine, Chiba, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Kazuki Ushizawa
- Tokyo Bay Rehabilitation Hospital, Department of Rehabilitation Medicine, Chiba, Japan
- Department of Rehabilitation Medicine I, Fujita Health University School of Medicine, Aichi, Japan
| | - Masashi Kumagai
- Tokyo Bay Rehabilitation Hospital, Department of Rehabilitation Medicine, Chiba, Japan
| | - Jun Yaeda
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tokyo, Japan
| | - Rieko Osu
- Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
11
|
Demers M, Cain A, Bishop L, Gunby T, Rowe JB, Zondervan D, Winstein CJ. Understanding preferences of stroke survivors for feedback provision about functional movement behavior from wearable sensors: a mixed-methods study. RESEARCH SQUARE 2023:rs.3.rs-2789807. [PMID: 37090658 PMCID: PMC10120751 DOI: 10.21203/rs.3.rs-2789807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background In stroke rehabilitation, wearable technology can be used as an intervention modality by providing timely, meaningful feedback on motor performance. Stroke survivors' preferences may offer a unique perspective on what metrics are intuitive, actionable, and meaningful to change behavior. However, few studies have identified feedback preferences from stroke survivors. This project aims to determine stroke survivors' satisfaction with feedback from wearable sensors (both mobility and arm/hand use) and to identify preferences for feedback type and delivery schedule. Methods A sample of 30 chronic stroke survivors wore a multi-sensor system in the natural environment over a 1-week monitoring period. The sensor system captured time in active movement of each arm, arm use ratio, step counts and stance time symmetry. Using the data from the monitoring period, participants were presented with a movement report with visual displays of quantitative and qualitative feedback. A survey and qualitative interview were used to assess ease of understanding, actionability and components of feedback that users found most meaningful to drive lasting behavior change. Results Arm/hand use and mobility sensor-derived feedback metrics were easy to understand and actionable. The preferred metric to encourage arm/hand use was the hourly arm use bar plot, and similarly the preferred metric to encourage mobility was the hourly steps bar plot, which were each ranked as top choice by 40% of participants. Participants perceived that quantitative (i.e., step counts) and qualitative (i.e., stance time symmetry) mobility metrics provided complementary information. Three main themes emerged from the qualitative analysis: 1) Motivation for behavior change, 2) Real-time feedback based on individual goals, and 3) Value of experienced clinicians for prescription and accountability. Participants stressed the importance of having feedback tailored to their own personalized goals and receiving guidance from clinicians on strategies to progress and increase functional movement behavior in the unsupervised home and community setting. Conclusion The resulting technology has the potential to integrate engineering and personalized rehabilitation to maximize participation in meaningful life activities outside clinical settings in a less structured environment-one where stroke survivors live their lives.
Collapse
|