1
|
Chen ZG, Fu SM. The role of the genetic influence of DRD4 in Chinese adults in the context of the choice of tourist attractions. Eur J Neurosci 2024; 59:2016-2028. [PMID: 38382896 DOI: 10.1111/ejn.16283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
The aim of this work was to analyse the effect of tandem repetitions in exon III of the DRD4 gene on the features of human decision-making in a model of choosing tourist attractions by adult residents of China. The study included 380 subjects: 162 (42.6%) men and 218 (57.4%) women. The mean age of the subjects was 31.7 ± 3.32 years. As a result of the survey of subjects, 5 groups of motivations for choosing tourist attractions were identified, and the frequency of their use, including the identified combinations, was determined. Using the genotyping method, the frequency of DRD4 subtypes among the subjects was determined, and their relationship with the indicated attraction selection groups was studied. It has been established that there is a significant dependence of the frequency of choosing the attractors 'relaxation', 'desire for novelty' and 'self-realization' and their combinations on the frequency of occurrence of the DRD4 2R, 4R and 5R+ subtypes in the study groups. A conclusion was made about the possible mechanism of the influence of manifestations of DRD4 subtypes on the choice of tourist attractors by implementing the neurophysiological influence of the genome on reducing the sensitivity of brain receptors to dopamine, which stimulates behaviours that compensate for the need for additional emotional influences. This work complements the existing knowledge about the impact of human innate properties on the characteristics of his behaviour and possible patterns of influence of human genotype variability on decision-making and suggests further possible directions of research in this area.
Collapse
Affiliation(s)
- Ze Geng Chen
- Public Course Research Office, Hunan University of Information Technology, Changsha, China
| | - Shi Min Fu
- Guangdong ATV College Performing Arts, Zhaoqing, China
| |
Collapse
|
2
|
Bischoff AR, Dalle Molle R, Mucellini AB, Pokhvisneva I, Levitan RD, Meaney MJ, Silveira PP. Accumbal μ-opioid receptors and salt taste-elicited hedonic responses in a rodent model of prenatal adversity, and their correlates using human functional genomics. Stress 2024; 27:2294954. [PMID: 38140734 DOI: 10.1080/10253890.2023.2294954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Prenatal adversity is associated with behavioral obesogenic features such as preference for palatable foods. Salt appetite may play a role in the development of adiposity and its consequences in individuals exposed to prenatal adversity, and sodium consumption involves individual differences in accumbal µ-opioid receptors function. We investigated the hedonic responses to salt and the levels of µ-opioid receptors and tyrosine hydroxylase in the nucleus accumbens (Nacc) of pups from an animal model of prenatal dietary restriction. In children, we evaluated the interaction between fetal growth and the genetic background associated with the accumbal µ-opioid receptor gene (OPRM1) expression on sodium consumption during a snack test. Sprague-Dawley dams were randomly allocated from pregnancy day 10 to receive an ad libitum (Adlib) or a 50% restricted (FR) diet. The pups' hedonic responses to a salt solution (NaCl 2%) or water were evaluated on the first day of life. FR and Adlib pups differ in their hedonic responses to salt, and there were decreased levels of accumbal µ-opioid and p-µ-opioid receptors in FR pups. In humans, a test meal and genotyping from buccal epithelial cells were performed in 270 children (38 intrauterine growth restricted-IUGR) at 4 years old from a Canadian prospective cohort (MAVAN). The OPRM1 genetic score predicted the sodium intake in IUGR children, but not in controls. The identification of mechanisms involved in the brain response to prenatal adversity and its consequences in behavioral phenotypes and risk for chronic diseases later in life is important for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Adrianne Rahde Bischoff
- Neonatal Hemodynamics, Stead Family Department of Pediatrics, Division of Neonatology, University of Iowa Stead Family Children's Hospital, Iowa City, IA, USA
| | - Roberta Dalle Molle
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Amanda Brondani Mucellini
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Robert D Levitan
- Centre for Addition and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patrícia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
3
|
Silveira PP, Meaney MJ. Examining the biological mechanisms of human mental disorders resulting from gene-environment interdependence using novel functional genomic approaches. Neurobiol Dis 2023; 178:106008. [PMID: 36690304 DOI: 10.1016/j.nbd.2023.106008] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/30/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
We explore how functional genomics approaches that integrate datasets from human and non-human model systems can improve our understanding of the effect of gene-environment interplay on the risk for mental disorders. We start by briefly defining the G-E paradigm and its challenges and then discuss the different levels of regulation of gene expression and the corresponding data existing in humans (genome wide genotyping, transcriptomics, DNA methylation, chromatin modifications, chromosome conformational changes, non-coding RNAs, proteomics and metabolomics), discussing novel approaches to the application of these data in the study of the origins of mental health. Finally, we discuss the multilevel integration of diverse types of data. Advance in the use of functional genomics in the context of a G-E perspective improves the detection of vulnerabilities, informing the development of preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| | - Michael J Meaney
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore; Brain - Body Initiative, Agency for Science, Technology and Research (ASTAR), Singapore.
| |
Collapse
|
4
|
Differential Relations of Parental Behavior to Children's Early Executive Function as a Function of Child Genotype: A Systematic Review. Clin Child Fam Psychol Rev 2022; 25:435-470. [PMID: 35195834 DOI: 10.1007/s10567-022-00387-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 11/03/2022]
Abstract
Child genotype is an important biologically based indicator of sensitivity to the effects of parental behavior on children's executive function (EF) in early childhood, birth to age 5. While evidence for gene × parental behavior interactions on children's early EF is growing, researchers have called the quality of evidence provided by gene × environment interaction studies into question. For this reason, this review comprehensively examined the literature and evaluated the evidence for gene × parental behavior interactions on children's early EF abilities. Psychology and psychiatry databases were searched for published peer-reviewed studies. A total of 18 studies met inclusion criteria. Twenty-nine of 89 (33%) examined interactions were significant. However, a p-curve analysis did not find the significant interactions to be of evidential value. A high rate of false positives, due to the continued use of candidate gene and haplotype measures of child genotype and small sample sizes, likely contributed to the high rate of significant interactions and low evidential value. The use of contemporary molecular genetic measures and larger sample sizes are necessary to advance our understanding of child genotype as a moderator of parental effects on children's EF during early childhood and the biopsychosocial mechanisms underlying children's EF development during this critical period. Without these changes, future research is likely to be stymied by the same limitations as current research.
Collapse
|
5
|
Portella AK, Papantoni A, Joseph AT, Chen L, Lee RS, Silveira PP, Dube L, Carnell S. Genetically-predicted prefrontal DRD4 gene expression modulates differentiated brain responses to food cues in adolescent girls and boys. Sci Rep 2021; 11:24094. [PMID: 34916545 PMCID: PMC8677785 DOI: 10.1038/s41598-021-02797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
The dopamine receptor 4 (DRD4) in the prefrontal cortex (PFC) acts to modulate behaviours including cognitive control and motivation, and has been implicated in behavioral inhibition and responsivity to food cues. Adolescence is a sensitive period for the development of habitual eating behaviors and obesity risk, with potential mediation by development of the PFC. We previously found that genetic variations influencing DRD4 function or expression were associated with measures of laboratory and real-world eating behavior in girls and boys. Here we investigated brain responses to high energy–density (ED) and low-ED food cues using an fMRI task conducted in the satiated state. We used the gene-based association method PrediXcan to estimate tissue-specific DRD4 gene expression in prefrontal brain areas from individual genotypes. Among girls, those with lower vs. higher predicted prefrontal DRD4 expression showed lesser activation to high-ED and low-ED vs. non-food cues in a distributed network of regions implicated in attention and sensorimotor processing including middle frontal gyrus, and lesser activation to low-ED vs non-food cues in key regions implicated in valuation including orbitofrontal cortex and ventromedial PFC. In contrast, males with lower vs. higher predicted prefrontal DRD4 expression showed minimal differences in food cue response, namely relatively greater activation to high-ED and low-ED vs. non-food cues in the inferior parietal lobule. Our data suggest sex-specific effects of prefrontal DRD4 on brain food responsiveness in adolescence, with modulation of distributed regions relevant to cognitive control and motivation observable in female adolescents.
Collapse
Affiliation(s)
- Andre K Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada.,Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brazil
| | - Afroditi Papantoni
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antoneta T Joseph
- McGill Centre for the Convergence of Health and Economics (MCCHE), McGill University, Montreal, Canada
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Division of Psychiatric Neuroimaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard S Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Potter-Dickey A, Letourneau N, Silveira PP, Ntanda H, Giesbrecht GF, Hart M, Dewell S, de Koning APJ. Associations Among Parental Caregiving Quality, Cannabinoid Receptor 1 Expression-Based Polygenic Scores, and Infant-Parent Attachment: Evidence for Differential Genetic Susceptibility? Front Neurosci 2021; 15:704392. [PMID: 34385904 PMCID: PMC8353245 DOI: 10.3389/fnins.2021.704392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 11/23/2022] Open
Abstract
Attachment is a biological evolutionary system contributing to infant survival. When primary caregivers/parents are sensitive and responsive to their infants’ needs, infants develop a sense of security. Secure infant attachment has been linked to healthy brain and organ-system development. Belsky and colleagues proposed the term differential susceptibility to describe context-dependent associations between genetic variations and behavioral outcomes as a function of parenting environments. Variations in the Cannabinoid Receptor Gene 1 (CNR1) are associated with memory, mood, and reward and connote differential susceptibility to more and less optimal parental caregiving quality in predicting children’s behavioral problems.
Collapse
Affiliation(s)
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada.,Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patricia P Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Henry Ntanda
- Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Gerald F Giesbrecht
- Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Department Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Martha Hart
- Owerko Centre, Child Development Centre, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah Dewell
- Faculty of Nursing, University of Calgary, Calgary, AB, Canada.,School of Nursing, University of Northern British Columbia, Prince George, BC, Canada
| | - A P Jason de Koning
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Life-course effects of early life adversity exposure on eating behavior and metabolism. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:237-273. [PMID: 34311901 DOI: 10.1016/bs.afnr.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Environmental variations in early life influence brain development, making individuals more vulnerable to psychiatric and metabolic disorders. Early life stress (ELS) has a strong impact on the development of eating behavior. However, eating is a complex behavior, determined by an interaction between signals of energy homeostasis, neuronal circuits involved in its regulation, and circuits related to rewarding properties of the food. Although mechanisms underlying ELS-induced altered feeding behavior are not completely understood, evidence suggest that the effects of ELS on metabolic, mood, and emotional disorders, as well as reward system dysfunctions can contribute directly or indirectly to altered feeding behavior. The focus of this chapter is to discuss the effects of ELS on eating behavior and metabolism, considering different factors that control appetite such as energy homeostasis, hedonic properties of the food, emotional and cognitive status. After highlighting classic studies on the association between ELS and eating behavior alterations, we discuss how exposure to adversity can interact with genetics characteristics to predict variable outcomes.
Collapse
|
8
|
Dopamine D4 receptor gene polymorphism (DRD4 VNTR) moderates real-world behavioural response to the food retail environment in children. BMC Public Health 2021; 21:145. [PMID: 33530977 PMCID: PMC7856809 DOI: 10.1186/s12889-021-10160-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background Evidence for the impact of the food retailing environment on food-related and obesity outcomes remains equivocal, but only a few studies have attempted to identify sub-populations for whom this relationship might be stronger than others. Genetic polymorphisms related to dopamine signalling have been associated with differences in responses to rewards such as food and may be candidate markers to identify such sub-populations. This study sought to investigate whether genetic variation of the dopamine D4 receptor gene (DRD4 exon III 48 bp VNTR polymorphism) moderated the association between local exposure to food retailers on BMI and diet in a sample of 4 to12-year-old children. Methods Data collected from a birth cohort and a community cross-sectional study conducted in Montreal, Canada, were combined to provide DRD4 VNTR polymorphism data in terms of presence of the 7-repeat allele (DRD4-7R) for 322 children aged between 4 and 12 (M (SD): 6.8(2.8) y). Outcomes were Body Mass Index (BMI) for age and energy density derived from a Food Frequency Questionnaire. Food environment was expressed as the proportion of local food retailers classified as healthful within 3 km of participants’ residence. Linear regression models adjusted for age, sex, income, cohort, and geographic clustering were used to test gene*environment interactions. Results A significant gene*food environment interaction was found for energy density with results indicating that DRD4-7R carriers had more energy dense diets than non-carriers, with this effect being more pronounced in children living in areas with proportionally more unhealthy food retailers. No evidence of main or interactive effects of DRD4 VNTR and food environment was found for BMI. Conclusions Results of the present study suggest that a genetic marker related to dopamine pathways can identify children with potentially greater responsiveness to unhealthy local food environment. Future studies should investigate additional elements of the food environment and test whether results hold across different populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10160-w.
Collapse
|
9
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
10
|
Portella AK, Papantoni A, Paquet C, Moore S, Rosch KS, Mostofsky S, Lee RS, Smith KR, Levitan R, Silveira PP, Carnell S, Dube L. Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents. PLoS One 2020; 15:e0234601. [PMID: 32589693 PMCID: PMC7319347 DOI: 10.1371/journal.pone.0234601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Body weight is substantially determined by eating behaviors, which are themselves driven by biological factors interacting with the environment. Previous studies in young children suggest that genetic influences on dopamine function may confer differential susceptibility to the environment in such a way that increases behavioral obesity risk in a lower socioeconomic status (SES) environment but decreases it in a higher SES environment. We aimed to test if this pattern of effect could also be observed in adolescence, another critical period for development in brain and behavior, using a novel measure of predicted expression of the dopamine receptor 4 (DRD4) gene in prefrontal cortex. In a sample of 76 adolescents (37 boys and 39 girls from Baltimore, Maryland/US, aged 14-18y), we estimated individual levels of DRD4 gene expression (PredDRD4) in prefrontal cortex from individual genomic data using PrediXcan, and tested interactions with a composite SES score derived from their annual household income, maternal education, food insecurity, perceived resource availability, and receipt of public assistance. Primary outcomes were snack intake during a multi-item ad libitum meal test, and food-related impulsivity assessed using a food-adapted go/no-go task. A linear regression model adjusted for sex, BMI z-score, and genetic ethnicity demonstrated a PredDRD4 by composite SES score interaction for snack intake (p = 0.009), such that adolescents who had lower PredDRD4 levels exhibited greater snack intake in the lower SES group, but lesser snack intake in the higher SES group. Exploratory analysis revealed a similar pattern for scores on the Perceived Stress Scale (p = 0.001) such that the low PredDRD4 group reported higher stress in the lower SES group, but less stress in the higher SES group, suggesting that PredDRD4 may act in part by affecting perceptions of the environment. These results are consistent with a differential susceptibility model in which genes influencing environmental responsiveness interact with environments varying in obesogenicity to confer behavioral obesity risk in a less favorable environment, but behavioral obesity protection in a favorable one.
Collapse
Affiliation(s)
- Andre Krumel Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
- Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brasil
| | - Afroditi Papantoni
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Catherine Paquet
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Spencer Moore
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Keri Shiels Rosch
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stewart Mostofsky
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Richard S. Lee
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Robert Levitan
- Centre for Addition and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, QC, Canada
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| |
Collapse
|