1
|
Flueck-Giraud M, Schmidt-Posthaus H, Bergadano A, Adrian-Kalchhauser I. An adaptable, user-friendly score sheet to monitor welfare in experimental fish. Lab Anim 2024:236772241271013. [PMID: 39668587 DOI: 10.1177/00236772241271013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Fish are increasingly used as experimental animals across research fields. Currently, around a quarter of all experimental animals used are fish. Less than 20% of these are standard model species. Welfare assessments for experimental fish are in their infancy compared with those for rodents. This can be attributed to the diversity of species used, the relative recency of fish as the go-to model for research, and challenges to assess welfare in non-vocal underwater species. The lack of guidelines and tools presents a challenge for researchers (particularly, for newcomers), for ethics committees and for implementing refinement measures. Here, we present an adaptable, user-friendly score sheet for fish based on MS Excel. The parameters are based on a literature review, have been validated by expert interviews and evaluated by a fish pathologist. The tool allows scoring of individual fish as well as groups, calculates summary scores and visualizes trends. We provide the underlying literature, give use examples and provide instructions on the adaptation and use of the score sheet. We hope that this tool will empower researchers to include welfare assessment in their routines, foster discussions on fish welfare parameters among scientists, facilitate interactions with ethics committees and, most importantly, enable the refinement of fish experiments.
Collapse
Affiliation(s)
- Mathilde Flueck-Giraud
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Institute for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Switzerland
| | | | | |
Collapse
|
2
|
Burkhalter MD, Philipp M. Fin clipping does not increase opercular beat rate in tricaine-treated zebrafish. Lab Anim 2024; 58:616-620. [PMID: 39157987 DOI: 10.1177/00236772241252551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
To carry out research with genetically modified animals, their genotype has to be assessed. A standard protocol to obtain required tissue samples from zebrafish is finclipping. However, some studies reported considerable stress induced by this protocol. We therefore assessed ventilation as a read-out for stress in zebrafish that underwent finclipping during routine genotyping in our fish facility. Our analysis could not confirm a strong increase of ventilation as had been previously reported. Instead, handled zebrafish showed ventilation rates in the range of controls that remained in their holding tanks. Additionally, we detected a slight reduction of ventilation rates up to an hour after anaesthesia in zebrafish treated with tricaine only, suggesting a prolonged protecting effect by this anaesthetic.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University Tübingen, Germany
| |
Collapse
|
3
|
Oh S, Lee S. Fish Welfare-Related Issues and Their Relevance in Land-Based Olive Flounder ( Paralichthys olivaceus) Farms in Korea. Animals (Basel) 2024; 14:1693. [PMID: 38891740 PMCID: PMC11171225 DOI: 10.3390/ani14111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Korean aquaculture has expanded considerably in recent decades; however, this growth has often prioritized quantity over fish welfare. Therefore, we analyzed the aquaculture practices of olive flounder, the predominant species in Korean consumption and production, within the framework of fish welfare. We conducted extensive interviews and surveys across olive flounder farms in Jeju-do and Wando to examine prevalent issues impacting fish welfare in aquaculture. These issues include stressors, mass mortality events, and disease outbreaks, all of which strain the welfare of farmed fish. Moreover, our survey revealed farmers' varying perceptions of fish welfare, highlighting the necessity for a cohesive approach. Accordingly, we propose recommendations to enhance fish welfare and establish a more sustainable aquaculture model in Korea. Ensuring fish welfare in aquaculture operations requires a comprehensive approach that considers the physiological and behavioral needs of fish throughout the farming lifecycle. By prioritizing fish welfare, Korean aquaculture can strengthen its growth while maintaining ethical standards and ensuring the well-being of farmed fish. This welfare-centric approach is crucial for the long-term sustainability and resilience of the Korean aquaculture industry. By addressing welfare concerns and promoting responsible practices, Korean aquaculture can foster an ethically sound and sustainable future.
Collapse
Affiliation(s)
- Seoyeon Oh
- Fisheries Policy Research Department, The Korean Maritime Institute Busan, Busan 49111, Republic of Korea;
| | - Seunghyung Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Sneddon LU, Schroeder P, Roque A, Finger-Baier K, Fleming A, Tinman S, Collet B. Pain management in zebrafish : Report from a FELASA Working Group. Lab Anim 2024; 58:261-276. [PMID: 38051824 PMCID: PMC11264547 DOI: 10.1177/00236772231198733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 12/07/2023]
Abstract
Empirical evidence suggests fishes meet the criteria for experiencing pain beyond a reasonable doubt and zebrafish are being increasingly used in studies of pain and nociception. Zebrafish are adopted across a wide range of experimental fields and their use is growing particularly in biomedical studies. Many laboratory procedures in zebrafish involve tissue damage and this may give rise to pain. Therefore, this FELASA Working Group reviewed the evidence for pain in zebrafish, the indicators used to assess pain and the impact of a range of drugs with pain-relieving properties. We report that there are several behavioural indicators that can be used to determine pain, including reduced activity, space use and distance travelled. Pain-relieving drugs prevent these responses, and we highlight the dose and administration route. To minimise or avoid pain, several refinements are suggested for common laboratory procedures. Finally, practical suggestions are made for the management and alleviation of pain in laboratory zebrafish, including recommendations for analgesia. Pain management is an important refinement in experimental animal use and so our report has the potential to improve zebrafish welfare during and after invasive procedures in laboratories across the globe.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biological and Environmental Sciences, University of Gothenburg, Sweden
| | - Paul Schroeder
- Red Kite Veterinary Consultants, 30 Upper High Street, Thame, Oxon, OX9 3EZ, UK
| | | | - Karin Finger-Baier
- Max Planck Institute of Neurobiology (now: Max Planck Institute for Biological Intelligence), Department Genes – Circuits – Behaviour, Martinsried, Germany
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, UK
| | - Simon Tinman
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University Ramat Gan, Israel
| | | |
Collapse
|
5
|
Audira G, Huang JC, Chen KHC, Kurnia KA, Vasquez RD, Roldan MJM, Lai YH, Hsiao CD, Yen CY. A comprehensive painkillers screening by assessing zebrafish behaviors after caudal fin amputation. Biomed Pharmacother 2023; 168:115641. [PMID: 37806085 DOI: 10.1016/j.biopha.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Recently, the usage of zebrafish for pain studies has increased in the past years, especially due to its robust pain-stimulated behaviors. Fin amputation has been demonstrated to induce a noxious response in zebrafish. However, based on the prior study, although lidocaine, the most used painkiller in zebrafish, has been shown to ameliorate amputated zebrafish behaviors, it still causes some prolonged effects. Therefore, alternative painkillers are always needed to improve the treatment quality of fin-amputated zebrafish. Here, the effects of several analgesics in recovering zebrafish behaviors post-fin amputation were evaluated. From the results, five painkillers were found to have potentially beneficial effects on amputated fish behaviors. Overall, these results aligned with their binding energy level to target proteins of COX-1 and COX-2. Later, based on their sub-chronic effects on zebrafish survivability, indomethacin, and diclofenac were further studied. This combination showed a prominent effect in recovering zebrafish behaviors when administered orally or through waterborne exposure, even with lower concentrations. Next, based on the ELISA in zebrafish brain tissue, although some changes were found in the treated group, no statistical differences were observed in most of the tested biomarkers. However, since heatmap clustering showed a similar pattern between biochemical and behavior endpoints, the minor changes in each biomarker may be sufficient in changing the fish behaviors.
Collapse
Affiliation(s)
- Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kelvin H-C Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Kevin Adi Kurnia
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ross D Vasquez
- Department of Pharmacy, Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Marri Jmelou M Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan; Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan.
| | - Cheng-Yo Yen
- Department of Orthopedics, E-Da Cancer Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, No.1, E-Da Road, Yan-Chau District, 824, Kaohsiung, Taiwan.
| |
Collapse
|
6
|
Berg CC, Cox S, Mulreany L, Wolf K, Anderson K. PHARMACOKINETICS OF MELOXICAM AFTER SINGLE ORAL AND INTRAMUSCULAR ADMINISTRATION IN CHINA ROCKFISH ( SEBASTES NEBULOSUS). J Zoo Wildl Med 2023; 54:8-15. [PMID: 36971623 DOI: 10.1638/2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 03/29/2023] Open
Abstract
Fish species are important for various purposes including aquaculture stock and display animals, but there are significant gaps in the medical knowledge regarding pharmacological parameters and effective pain management. Meloxicam is a nonsteroidal anti-inflammatory drug (NSAID) that has been studied in few teleost species and with several administration routes. However, these species were typically freshwater or euryhaline fish, and evaluation in marine species is lacking. The pharmacokinetic properties of meloxicam were determined in nine adult China rockfish (Sebastes nebulosus), presumed healthy based on physical examination and benign medical histories. Based on a pilot study, China rockfish were given 1 mg/kg meloxicam via IM injection in the epaxial musculature, and, after a 48-h washout period, 1 mg/kg meloxicam was given by PO gavage. Blood samples were collected from the caudal vein at baseline and at nine time intervals over a 48-h time period following administration of meloxicam. Plasma meloxicam concentrations were determined by reverse phase high-performance liquid chromatography, and noncompartmental analysis was performed. The mean peak plasma concentration after IM injection was 4.9 µg/ml, and the mean terminal half-life was 5.0 h. The mean peak plasma concentration after PO administration was 0.07 µg/ml. Based on these findings, IM injected meloxicam reaches plasma levels consistent with therapeutic concentrations in select mammals, and peak levels were maintained for ≤12 h. Single-dose PO administration failed to achieve similar concentrations, and clinical practicality is unknown. Further studies evaluating NSAID multidose regimes and their pharmacodynamic effects may provide additional dosing information.
Collapse
Affiliation(s)
- Colin C Berg
- Point Defiance Zoo & Aquarium, Tacoma, WA 98407, USA,
| | - Sherry Cox
- University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996, USA
| | | | - Karen Wolf
- Point Defiance Zoo & Aquarium, Tacoma, WA 98407, USA
| | | |
Collapse
|
7
|
Sneddon LU, Roques JAC. Pain Recognition in Fish. Vet Clin North Am Exot Anim Pract 2023; 26:1-10. [PMID: 36402476 DOI: 10.1016/j.cvex.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Empirical evidence has demonstrated that fish experience pain, and so to ensure their good welfare, it is vital that we can recognize and assess pain. A range of general, behavioral, and physiologic indicators can be used when assessing pain in fish. Many of these can be used at the tank side and are termed operational welfare indicators, whereas some require further computer or laboratory analysis. Behavioral indicators are valid and have been shown to profoundly differ between nonpainful and painful treatments in fish. However, these are not universal, and species-specific differences exist in behavioral responses to pain.
Collapse
Affiliation(s)
- Lynne U Sneddon
- Department of Biology and Environmental Sciences, University of Gothenburg, Medicineragatan 18A, Gothenburg 413 90, Sweden.
| | - Jonathan A C Roques
- Department of Biology and Environmental Sciences, University of Gothenburg, Medicineragatan 18A, Gothenburg 413 90, Sweden; SWEMARC, the Swedish Mariculture Research Center, University of Gothenburg, 18A, Gothenburg 413 90, Sweden
| |
Collapse
|
8
|
Rosa LV, Costa FV, Gonçalves FL, Rosemberg DB. Acetic acid-induced nociception modulates sociability in adult zebrafish: influence on shoaling behavior in heterogeneous groups and social preference. Behav Brain Res 2022; 434:114029. [PMID: 35907568 DOI: 10.1016/j.bbr.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Due to the recognition of fishes as sentient beings, the zebrafish (Danio rerio) has become an emergent animal model system to investigate the biological processes of nocifensive responses. Here, we aimed to characterize the zebrafish social behavior in a nociception-based context. For this purpose, using a three-dimensional analysis of heterogeneous shoals, we investigated the main behavioral responses in two 6-min trials: before (baseline) and after a single intraperitoneal (i.p) injection of 10μL phosphate-buffered saline (PBS) (control), acetic acid 5% (AA), morphine 2.5mg/kg (MOR) or acetic acid 5% plus morphine 2.5mg/kg (AA+MOR) in one subject from a four-fish shoal. The social preference of individuals for tanks with shoals of fish treated with PBS, 5% AA, or to an empty aquarium were also tested. We verified that AA administration disrupted the shoal homogeneity by eliciting dispersion of the treated fish with simultaneous clustering of non-manipulated fish. Morphine coadministration protected against AA-induced behavioral changes. The social preference test revealed a clear preference to conspecifics (PBS and AA) over an empty tank. However, a prominent preference for PBS- over AA-treated shoal was verified. Overall, our novel findings show that nociception can modulate zebrafish sociability, possibly due to the visual recognition of nocifensive responses. Although future studies are needed to elucidate how nociception modulates zebrafish social behavior, our results contribute to improve the welfare assessment of zebrafish shoals under distinct experimental manipulations.
Collapse
Affiliation(s)
- Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | | | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
9
|
Acute and Chronic Effects of Fin Amputation on Behavior Performance of Adult Zebrafish in 3D Locomotion Test Assessed with Fractal Dimension and Entropy Analyses and Their Relationship to Fin Regeneration. BIOLOGY 2022; 11:biology11070969. [PMID: 36101350 PMCID: PMC9312171 DOI: 10.3390/biology11070969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 01/25/2023]
Abstract
Simple Summary Fin amputation is a routinely conducted procedure for various experiments, especially in zebrafish. However, no study compares the acute and chronic effects of the amputation of each fin on their behaviors. In addition, although some analgesics have been applied after the fin amputation procedure, the long-term effects of these drugs in have not been evaluated yet. In this study, we found that amputation in the caudal fin resulted in the most pronounced behavior alterations and their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes came from pain elicited from the fin amputation. Finally, while lidocaine treatment could ameliorate the behavioral effects after the amputation procedure, it did not accelerate the behavior recovery process; instead, it caused the fish to display some slight side effects. Abstract The fin is known to play an important role in swimming for many adult fish, including zebrafish. Zebrafish fins consist of paired pectoral and pelvic with unpaired dorsal, anal, and caudal tail fins with specific functions in fish locomotion. However, there was no study comparing the behavior effects caused by the absence of each fin. We amputated each fin of zebrafish and evaluated their behavior performance in the 3D locomotion test using fractal dimension and entropy analyses. Afterward, the behavior recovery after the tail fin amputation was also evaluated, together with the fin regeneration process to study their relationship. Finally, we conducted a further study to confirm whether the observed behavior alterations were from pain elicited by fin amputation procedure or not by using lidocaine, a pain-relieving drug. Amputation in the caudal fin resulted in the most pronounced behavior alterations, especially in their movement complexity. Furthermore, we also found that their behavior was fully recovered before the caudal fin was fully regenerated, indicating that these behavioral changes were not majorly due to a mechanical change in tail length; instead, they may come from pain elicited from the fin amputation, since treatment with lidocaine could ameliorate the behavioral effects after the amputation procedure. However, lidocaine did not accelerate the behavior recovery process; instead, it caused the fishes to display some slight side effects. This study highlights the potential moderate severity of fin amputation in zebrafish and the importance of analgesia usage. However, side effects may occur and need to be considered since fin amputation is routinely conducted for various research, especially genomic screening.
Collapse
|
10
|
Lambert H, Cornish A, Elwin A, D’Cruze N. A Kettle of Fish: A Review of the Scientific Literature for Evidence of Fish Sentience. Animals (Basel) 2022; 12:1182. [PMID: 35565608 PMCID: PMC9100576 DOI: 10.3390/ani12091182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
Fish are traded, caught, farmed, and killed in their trillions every year around the world, yet their welfare is often neglected and their sentience regularly disregarded. In this review, we have sought to (1) catalogue the extent to which fish sentience has featured over the past 31 years in the scientific literature and (2) discuss the importance of fish sentience in relation to their commercial uses. We searched the journal database Science Direct using 42 keywords that describe traits or elements of sentience to find articles that were referring to or exploring fish sentience. Our review returned 470 results for fish sentience in 142 different species and subspecies of fish, and featured 19 different sentience keywords. The top four keywords were; 'stress' (psychological) (n = 216, 45.9% of total results), 'anxiety' (n = 144, 30.6%), 'fear' (n = 46, 9.7%), and 'pain' (n = 27, 5.7%). Our findings highlight an abundance of evidence for fish sentience in the published scientific literature. We conclude that legislation governing the treatment of fish and attitudes towards their welfare require scrutiny so that their welfare can be safeguarded across the globe.
Collapse
Affiliation(s)
- Helen Lambert
- Animal Welfare Consultancy, Kingsteignton TQ12 3BW, UK
| | - Amelia Cornish
- Independent Animal Welfare Consultant, Caulfield South 3162, Australia;
| | - Angie Elwin
- World Animal Protection, 222 Gray’s Inn Rd, London WC1X 8HB, UK; (A.E.); (N.D.)
| | - Neil D’Cruze
- World Animal Protection, 222 Gray’s Inn Rd, London WC1X 8HB, UK; (A.E.); (N.D.)
| |
Collapse
|
11
|
Sabrautzki S, Miller M, Kague E, Brielmeier M. Welfare Assessment of Adult Laboratory Zebrafish: A Practical Guide. Zebrafish 2021; 18:282-292. [PMID: 34227898 DOI: 10.1089/zeb.2021.0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Teleost fish such as Danio rerio (zebrafish) have been successfully used in biomedical research since decades. Genetically altered fish lines obtained by state-of-the-art genetic technologies are serving as well-known model organisms. In Europe, following Directive 2010/63/EU, generation, breeding, and husbandry of new genetically altered lines of laboratory animals require governmental state approval in case pain, suffering, distress, or long-lasting harm to the offspring derived by breeding of these lines cannot be excluded. The identification and assessment of pain, distress, or harm, according to a severity classification of mild, moderate, severe, or humane endpoint, became a new challenging task for all scientists, animal technicians, and veterinarians for daily work with laboratory zebrafish. In this study, we describe the performance of the assessment of welfare parameters of selected pathologic phenotypes and abnormalities frequently found in laboratory fish facilities based on veterinary, biological, and physiological aspects by using a dedicated score sheet. In a colony of zebrafish, we evaluated the frequency of genotype-independent abnormalities observed within 3 years. We give examples for severity classification and measures once an abnormality has been identified according to the 3Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
- Sibylle Sabrautzki
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Manuel Miller
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
12
|
Ohnesorge N, Heinl C, Lewejohann L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front Neurosci 2021; 15:632634. [PMID: 33897350 PMCID: PMC8061727 DOI: 10.3389/fnins.2021.632634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pain is an unpleasant, negative emotion and its debilitating effects are complex to manage. Mammalian models have long dominated research on nociception and pain, but there is increasing evidence for comparable processes in fish. The need to improve existing pain models for drug research and the obligation for 3R refinement of fish procedures facilitated the development of numerous new assays of nociception and pain in fish. The zebrafish is already a well-established animal model in many other research areas like toxicity testing, as model for diseases or regeneration and has great potential in pain research, too. Methods of electrophysiology, molecular biology, analysis of reflexive or non-reflexive behavior and fluorescent imaging are routinely applied but it is the combination of these tools what makes the zebrafish model so powerful. Simultaneously, observing complex behavior in free-swimming larvae, as well as their neuronal activity at the cellular level, opens new avenues for pain research. This review aims to supply a toolbox for researchers by summarizing current methods to study nociception and pain in zebrafish. We identify treatments with the best algogenic potential, be it chemical, thermal or electric stimuli and discuss options of analgesia to counter effects of nociception and pain by opioids, non-steroidal anti-inflammatory drugs (NSAIDs) or local anesthetics. In addition, we critically evaluate these practices, identify gaps of knowledge and outline potential future developments.
Collapse
Affiliation(s)
- Nils Ohnesorge
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Céline Heinl
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
13
|
Zebrafish early life stages as alternative model to study 'designer drugs': Concordance with mammals in response to opioids. Toxicol Appl Pharmacol 2021; 419:115483. [PMID: 33722667 DOI: 10.1016/j.taap.2021.115483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
The number of new psychoactive substances (NPS) on the illicit drug market increases fast, posing a need to urgently understand their toxicity and behavioural effects. However, with currently available rodent models, NPS assessment is limited to a few substances per year. Therefore, zebrafish (Danio rerio) embryos and larvae have been suggested as an alternative model that would require less time and resources to perform an initial assessment and could help to prioritize substances for subsequent evaluation in rodents. To validate this model, more information on the concordance of zebrafish larvae and mammalian responses to specific classes of NPS is needed. Here, we studied toxicity and behavioural effects of opioids in zebrafish early life stages. Synthetic opioids are a class of NPS that are often used in pain medication but also frequently abused, having caused multiple intoxications and fatalities recently. Our data shows that fentanyl derivatives were the most toxic among the tested opioids, with toxicity in the zebrafish embryo toxicity test decreasing in the following order: butyrfentanyl>3-methylfentanyl>fentanyl>tramadol> O-desmethyltramadol>morphine. Similar to rodents, tramadol as well as fentanyl and its derivatives led to hypoactive behaviour in zebrafish larvae, with 3-methylfentanyl being the most potent. Physico-chemical properties-based predictions of chemicals' uptake into zebrafish embryos and larvae correlated well with the effects observed. Further, the biotransformation pattern of butyrfentanyl in zebrafish larvae was reminiscent of that in humans. Comparison of toxicity and behavioural responses to opioids in zebrafish and rodents supports zebrafish as a suitable alternative model for rapidly testing synthetic opioids.
Collapse
|
14
|
Costa FV, Rosa LV, Quadros VA, de Abreu MS, Santos ARS, Sneddon LU, Kalueff AV, Rosemberg DB. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr Neuropharmacol 2021; 20:476-493. [PMID: 33719974 DOI: 10.2174/1570159x19666210311104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) has been considered a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish to recognize painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from an evolutionary and translational perspective. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.
Collapse
Affiliation(s)
- Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS. Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC. Brazil
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological & Environmental Sciences, Box 461, SE-405 30 Gothenburg. Sweden
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg. Russian Federation
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| |
Collapse
|
15
|
Greene W, Mylniczenko ND, Storms T, Burns CM, Lewbart GA, Byrd L, Papich MG. Pharmacokinetics of Ketoprofen in Nile Tilapia ( Oreochromis niloticus) and Rainbow Trout ( Oncorhynchus mykiss). Front Vet Sci 2020; 7:585324. [PMID: 33134366 PMCID: PMC7579418 DOI: 10.3389/fvets.2020.585324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to document the pharmacokinetics of ketoprofen following 3 mg/kg intramuscular (IM) and intravenous (IV) injections in rainbow trout (Oncorhynchus mykiss) and 8 mg/kg intramuscular (IM) injection in Nile tilapia (Oreochromis niloticus). Plasma was collected laterally from the tail vein for drug analysis at various time intervals up to 72 h following the injection of ketoprofen. In trout, area under the curve (AUC) levels were 115.24 μg hr/mL for IM and 135.69 μg hr/mL for IV groups with a half-life of 4.40 and 3.91 h, respectively. In both trout and tilapia, there were detectable ketoprofen concentrations in most fish for 24 h post-injection. In tilapia, there was a large difference between the R- and S-enantiomers, suggesting either chiral inversion from R- to S-enantiomer or more rapid clearance of the R-enantiomer. AUC values of the S- and R-enantiomers were 510 and 194 μg hr/Ml, respectively, corresponding to a faster clearance for the R-enantiomer. This study shows that there were very high plasma concentrations of ketoprofen in trout and tilapia with no adverse effects observed. Future studies on the efficacy, frequency of dosing, analgesia, adverse effects, and route of administration are warranted.
Collapse
Affiliation(s)
- Whitney Greene
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | | | | | - Charlene M Burns
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | - Gregory A Lewbart
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Lynne Byrd
- Mote Marine Laboratory and Aquarium, Sarasota, FL, United States
| | - Mark G Papich
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
16
|
Thomson JS, Deakin AG, Cossins AR, Spencer JW, Young IS, Sneddon LU. Acute and chronic stress prevents responses to pain in zebrafish: evidence for stress-induced analgesia. ACTA ACUST UNITED AC 2020; 223:223/14/jeb224527. [PMID: 32699156 PMCID: PMC7391404 DOI: 10.1242/jeb.224527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
The state of an animal prior to the application of a noxious stimulus can have a profound effect on their nociceptive threshold and subsequent behaviour. In mammals, the presence of acute stress preceding a painful event can have an analgesic effect whereas the presence of chronic stress can result in hyperalgesia. While considerable research has been conducted on the ability of stress to modulate mammalian responses to pain, relatively little is known about fish. This is of particular concern given that zebrafish (Danio rerio) are an extensively used model organism subject to a wide array of invasive procedures where the level of stress prior to experimentation could pose a major confounding factor. This study, therefore, investigated the impact of both acute and chronic stress on the behaviour of zebrafish subjected to a potentially painful laboratory procedure, the fin clip. In stress-free individuals, those subjected to the fin clip spent more time in the bottom of the tank, had reduced swimming speeds and less complex swimming trajectories; however, these behavioural changes were absent in fin-clipped fish that were first subject to either chronic or acute stress, suggesting the possibility of stress-induced analgesia (SIA). To test this, the opioid antagonist naloxone was administered to fish prior to the application of both the stress and fin-clip procedure. After naloxone, acutely stressed fin-clipped zebrafish exhibited the same behaviours as stress-free fin-clipped fish. This indicates the presence of SIA and the importance of opioid signalling in this mechanism. As stress reduced nociceptive responses in zebrafish, this demonstrates the potential for an endogenous analgesic system akin to the mammalian system. Future studies should delineate the neurobiological basis of stress-induced analgesia in fish. Summary: Exposure of zebrafish to acute or chronic stress prior to fin clipping prevents behavioural changes normally seen after fin clip; naloxone treatment prevented this effect, demonstrating stress-induced analgesia.
Collapse
Affiliation(s)
- Jack S Thomson
- School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
| | - Anthony G Deakin
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK.,Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Andrew R Cossins
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Joseph W Spencer
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Iain S Young
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
17
|
|
18
|
Abstract
In order to survive, animals must avoid injury and be able to detect potentially damaging stimuli via nociceptive mechanisms. If the injury is accompanied by a negative affective component, future behaviour should be altered and one can conclude the animal experienced the discomfort associated with pain. Fishes are the most successful vertebrate group when considering the number of species that have filled a variety of aquatic niches. The empirical evidence for nociception in fishes from the underlying molecular biology, neurobiology and anatomy of nociceptors through to whole animal behavioural responses is reviewed to demonstrate the evolutionary conservation of nociception and pain from invertebrates to vertebrates. Studies in fish have shown that the biology of the nociceptive system is strikingly similar to that found in mammals. Further, potentially painful events result in behavioural and physiological changes such as reduced activity, guarding behaviour, suspension of normal behaviour, increased ventilation rate and abnormal behaviours which are all prevented by the use of pain-relieving drugs. Fish also perform competing tasks less well when treated with a putative painful stimulus. Therefore, there is ample evidence to demonstrate that it is highly likely that fish experience pain and that pain-related behavioural changes are conserved across vertebrates. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
|
19
|
Williams CJA, James LE, Bertelsen MF, Wang T. Analgesia for non-mammalian vertebrates. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Thomson JS, Al-Temeemy AA, Isted H, Spencer JW, Sneddon LU. Assessment of behaviour in groups of zebrafish (Danio rerio) using an intelligent software monitoring tool, the chromatic fish analyser. J Neurosci Methods 2019; 328:108433. [PMID: 31520651 DOI: 10.1016/j.jneumeth.2019.108433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Zebrafish (Danio rerio) are an increasingly popular model species within a variety of biomedical and neurobiological contexts. Researchers are required to prevent any negative states, such as pain, when using experimental animals to optimise fish welfare but analysis tools for zebrafish are lacking. NEW METHOD The chromatic fish analyser (CFA) is a computer-based monitoring system that has the potential to identify changes in fish behaviour via spatial chromatic analysis of video images. The CFA was used to monitor the behaviour of groups of six fish, where none, one, three or six fish were given a fin clip. Additionally a drug with pain-relieving properties, lidocaine, was administered to determine if this ameliorated any alterations in behaviour. The CFA measured hue horizontally and vertically reflecting the position of the fish in their tank. Saturation (indicates clustering distribution) and lightness were measured to reflect overall zebrafish activity. RESULTS Changes in vertical hue demonstrated that all fin clipped animals were closer to the bottom of the tank relative to pre-treatment; this was not observed in control groups, and was alleviated in those treated with lidocaine. Saturation (clustering) and lightness alterations indicated fin clipped groups reduced activity after receiving the fin clip. Lidocaine was effective in preventing the behavioural changes when 1 or 3 fish were clipped. CONCLUSIONS The CFA proved powerful enough to identify significant changes in behaviour taken directly from video images. With further development this monitoring tool represents a step forward in detecting behavioural changes in groups of zebrafish indicating welfare.
Collapse
Affiliation(s)
- Jack S Thomson
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - Ali A Al-Temeemy
- Department of Laser and Optoelectronics Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Helen Isted
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Joseph W Spencer
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
21
|
Deakin AG, Buckley J, AlZu'bi HS, Cossins AR, Spencer JW, Al'Nuaimy W, Young IS, Thomson JS, Sneddon LU. Automated monitoring of behaviour in zebrafish after invasive procedures. Sci Rep 2019; 9:9042. [PMID: 31227751 PMCID: PMC6588586 DOI: 10.1038/s41598-019-45464-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Fish are used in a variety of experimental contexts often in high numbers. To maintain their welfare and ensure valid results during invasive procedures it is vital that we can detect subtle changes in behaviour that may allow us to intervene to provide pain-relief. Therefore, an automated method, the Fish Behaviour Index (FBI), was devised and used for testing the impact of laboratory procedures and efficacy of analgesic drugs in the model species, the zebrafish. Cameras with tracking software were used to visually track and quantify female zebrafish behaviour in real time after a number of laboratory procedures including fin clipping, PIT tagging, and nociceptor excitation via injection of acetic acid subcutaneously. The FBI was derived from activity and distance swum measured before and after these procedures compared with control and sham groups. Further, the efficacy of a range of drugs with analgesic properties to identify efficacy of these agents was explored. Lidocaine (5 mg/L), flunixin (8 mg/L) and morphine (48 mg/L) prevented the associated reduction in activity and distance swum after fin clipping. From an ethical perspective, the FBI represents a significant refinement in the use of zebrafish and could be adopted across a wide range of biological disciplines.
Collapse
Affiliation(s)
- Anthony G Deakin
- Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3BX, UK.,Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The BioScience Building, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jonathan Buckley
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The BioScience Building, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Hamzah S AlZu'bi
- Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3BX, UK
| | - Andrew R Cossins
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, The BioScience Building, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Joseph W Spencer
- Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3BX, UK
| | - Waleed Al'Nuaimy
- Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3BX, UK
| | - Iain S Young
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, The BioScience Building, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jack S Thomson
- School of Environmental Sciences, University of Liverpool, Nicholson Building, Brownlow Street, Liverpool, L69 3GP, UK
| | - Lynne U Sneddon
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The BioScience Building, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
22
|
Crivelaro RM, Thiesen R, Aldrovani M, Silva PES, Barros Sobrinho AAF, Moraes PC. Behavioural and physiological effects of methadone in the perioperative period on the Nile tilapia Oreochromis niloticus. JOURNAL OF FISH BIOLOGY 2019; 94:823-827. [PMID: 30868600 DOI: 10.1111/jfb.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Through the analysis of behavioural changes, this study demonstrates that methadone has behavioural, but not analgesic, effects on Oreochromis niloticus. It provides information that suggests the drug has sedative abilities, as the recovery time was shorter in the fish receiving methadone. Future research, with different doses and stimuli, is required to provide more information about analgesia.
Collapse
Affiliation(s)
- Roberta M Crivelaro
- Department of Small Animal Medicine and Surgery, College of Agrarian and Veterinarian Sciences, Via de acesso, professor Paulo Donato Castellani, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Marcela Aldrovani
- Department of Small Animal Medicine and Surgery, College of Agrarian and Veterinarian Sciences, Via de acesso, professor Paulo Donato Castellani, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Paloma E S Silva
- Department of Small Animal Medicine and Surgery, College of Agrarian and Veterinarian Sciences, Via de acesso, professor Paulo Donato Castellani, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Alexandre A F Barros Sobrinho
- Department of Small Animal Medicine and Surgery, College of Agrarian and Veterinarian Sciences, Via de acesso, professor Paulo Donato Castellani, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - Paola C Moraes
- Department of Small Animal Medicine and Surgery, College of Agrarian and Veterinarian Sciences, Via de acesso, professor Paulo Donato Castellani, São Paulo State University (Unesp), Jaboticabal, Brazil
| |
Collapse
|
23
|
Sneddon LU. Where to draw the line? Should the age of protection for zebrafish be lowered? Altern Lab Anim 2019; 46:309-311. [PMID: 30657327 DOI: 10.1177/026119291804600605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zebrafish are not protected by legislation in many countries until they reach the first feed stage, typically at five days post-fertilisation. If they exhibit similar responses to adults when responding to pain and other stimuli should they be given more protection?
Collapse
|
24
|
Sloman KA, Bouyoucos IA, Brooks EJ, Sneddon LU. Ethical considerations in fish research. JOURNAL OF FISH BIOLOGY 2019; 94:556-577. [PMID: 30838660 DOI: 10.1111/jfb.13946] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Fishes are used in a wide range of scientific studies, from conservation research with potential benefits to the species used to biomedical research with potential human benefits. Fish research can take place in both laboratories and field environments and methods used represent a continuum from non-invasive observations, handling, through to experimental manipulation. While some countries have legislation or guidance regarding the use of fish in research, many do not and there exists a diversity of scientific opinions on the sentience of fish and how we determine welfare. Nevertheless, there is a growing pressure on the scientific community to take more responsibility for the animals they work with through maximising the benefits of their research to humans or animals while minimising welfare or survival costs to their study animals. In this review, we focus primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies. We consider the use of anaesthetics and analgesics and how we mark individuals for identification purposes. We highlight the main ethical concerns facing researchers in both laboratory and field environments and identify areas that need urgent future research. We hope that this review will help inform those who wish to refine their ethical practices and stimulate thought among fish researchers for further avenues of refinement. Improved ethics and welfare of fishes will inevitably lead to increased scientific rigour and is in the best interests of both fishes and scientists.
Collapse
Affiliation(s)
- Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, UK
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan Cedex, France
| | - Edward J Brooks
- Cape Eleuthera Island School, Rock Sound, Eleuthera, The Bahamas
| | - Lynne U Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
25
|
Welfare Challenges Influence the Complexity of Movement: Fractal Analysis of Behaviour in Zebrafish. FISHES 2019. [DOI: 10.3390/fishes4010008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to assess welfare is an important refinement that will ensure the good condition of animals used in experimentation. The present study investigated the impact of invasive procedures on the patterns of movement of zebrafish (Danio rerio). Recordings were made before and after fin clipping, PIT tagging and a standard pain test and these were compared with control and sham handled zebrafish. The fractal dimension (FD) from the 3D trajectories was calculated to determine the effect of these treatments on the complexity of movement patterns. While the FD of zebrafish trajectories did not differ over time in either the control or sham group, the FDs of the treatment groups reduced in complexity. The FD of fish injected with different strengths of acetic acid declined in a dose-dependent manner allowing us to develop an arbitrary scale of severity of the treatments. The 3D trajectory plots from some groups indicated the presence of repetitive swimming patterns akin to stereotypical movements. When administered with lidocaine, which has analgesic properties, the movement complexity of fin clipped fish reverted to a pattern that resembled that of control fish. Fractal analysis of zebrafish locomotion could potentially be adopted as a tool for fish welfare assessment.
Collapse
|
26
|
Costa FV, Rosa LV, Quadros VA, Santos AR, Kalueff AV, Rosemberg DB. Understanding nociception-related phenotypes in adult zebrafish: Behavioral and pharmacological characterization using a new acetic acid model. Behav Brain Res 2019; 359:570-578. [DOI: 10.1016/j.bbr.2018.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/19/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
27
|
Intramuscular infiltration of a local anesthetic, lidocaine, does not result in adverse behavioural side effects in rainbow trout. Sci Rep 2018; 8:10250. [PMID: 29980719 PMCID: PMC6035270 DOI: 10.1038/s41598-018-28621-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 11/08/2022] Open
Abstract
Fish are a useful animal model for research, but our improvement in some aspects of their welfare has not kept pace with their increased popularity for this use. For example, researchers rarely use analgesics. We evaluated the side effects of lidocaine, a local anesthetic widely used in human and veterinary medicine. We infiltrated lidocaine on each side of the dorsal fin (total 20 mg/kg) of young rainbow trout (15 fish per group) compared with infiltration with an equal volume of saline. We monitored behaviour of individual trout during the 4-hour trial. Food was presented 5 times during the trial (30 min, 1 h, 2 h, 3 h, 4 h after infiltration) and we analyzed behaviour for 1 minute before and after food presentation. Behaviour of Saline-Infiltrated trout compared with trout that received no infiltration showed that infiltration in and of itself had no statistically significant effects on trout behaviour. However, there were many statistically significant effects of Lidocaine-Infiltrated trout compared with Saline-Infiltrated trout; none of the side-effects were adverse.
Collapse
|
28
|
Steenbergen PJ. Response of zebrafish larvae to mild electrical stimuli: A 96-well setup for behavioural screening. J Neurosci Methods 2018. [DOI: 10.1016/j.jneumeth.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Ellis L, Berrue F, Morash M, Achenbach J, Hill J, McDougall J. Comparison of cannabinoids with known analgesics using a novel high throughput zebrafish larval model of nociception. Behav Brain Res 2018; 337:151-159. [DOI: 10.1016/j.bbr.2017.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 09/17/2017] [Indexed: 12/13/2022]
|
30
|
Abstract
Reducing pain in animals is an ethical and sometimes legal requirement, but how do we assess pain and does it confound data collection?
Collapse
|
31
|
Wolkers CPB, Menescal-de-Oliveira L, Hoffmann A. Cannabinoid system of dorsomedial telencephalon modulates behavioral responses to noxious stimulation in the fish Leporinus macrocephalus. Physiol Behav 2017; 179:504-509. [DOI: 10.1016/j.physbeh.2017.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
|
32
|
White LJ, Thomson JS, Pounder KC, Coleman RC, Sneddon LU. The impact of social context on behaviour and the recovery from welfare challenges in zebrafish, Danio rerio. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Behavioural responses of fish larvae modulated by analgesic drugs after a stress exposure. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Baldisserotto B, Parodi TV, Stevens ED. Lack of postexposure analgesic efficacy of low concentrations of eugenol in zebrafish. Vet Anaesth Analg 2017; 45:48-56. [PMID: 29239756 DOI: 10.1016/j.vaa.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To test the postexposure analgesic efficacy of low doses of eugenol in zebrafish. STUDY DESIGN Prospective experimental study. ANIMALS A total of 76 large adult zebrafish (Danio rerio). METHODS Fish swimming behavior (median velocity, freeze time, high-speed swimming and distance moved in the vertical direction) was recorded in a 1.6 L video arena before and after exposure to eugenol (0, 1, 2, 5, 10 and 20 mg L-1). In a second experiment, fish were anesthetized with 2-phenoxy-ethanol and treated with an injection of 5% acetic acid (noxious stimulus), and then exposed to 0, 1, 2 and 5 mg L-1 eugenol. The fish swimming behavior was also recorded. RESULTS The higher doses (10 and 20 mg L-1) reduced the median velocity, high-speed swimming and distance moved in the vertical direction, and increased the freeze time. Zebrafish behavior was not altered by eugenol (1, 2 and 5 mg L-1) after noxious stimulation. CONCLUSIONS AND CLINICAL RELEVANCE The change in the behavior of zebrafish associated with a noxious stimulus can be monitored and is a good model for studying analgesia in fish. Eugenol (10 and 20 mg L-1) induced zebrafish sedation. The response after a noxious stimulus was not affected by postexposure to lower doses, and thus we cannot recommend its use as an analgesic.
Collapse
Affiliation(s)
- Bernardo Baldisserotto
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Thaylise V Parodi
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - E Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
35
|
Taylor JC, Dewberry LS, Totsch SK, Yessick LR, DeBerry JJ, Watts SA, Sorge RE. A novel zebrafish-based model of nociception. Physiol Behav 2017; 174:83-88. [DOI: 10.1016/j.physbeh.2017.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
|
36
|
Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Reduction in activity by noxious chemical stimulation is ameliorated by immersion in analgesic drugs in zebrafish. J Exp Biol 2017; 220:1451-1458. [DOI: 10.1242/jeb.146969] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Research has recently demonstrated that larval zebrafish show similar molecular responses to nociception to those of adults. Our study explored whether unprotected larval zebrafish exhibited altered behaviour after exposure to noxious chemicals and screened a range of analgesic drugs to determine their efficacy to reduce these responses. This approach aimed to validate larval zebrafish as a reliable replacement for adults as well as providing a high-throughput means of analysing behavioural responses. Zebrafish at 5 days post-fertilization were exposed to known noxious stimuli: acetic acid (0.01%, 0.1% and 0.25%) and citric acid (0.1%, 1% and 5%). The behavioural response of each was recorded and analysed using novel tracking software that measures time spent active in 25 larvae at one time. Subsequently, the efficacy of aspirin, lidocaine, morphine and flunixin as analgesics after exposure to 0.1% acetic acid was tested. Larvae exposed to 0.1% and 0.25% acetic acid spent less time active, whereas those exposed to 0.01% acetic acid and 0.1–5% citric acid showed an increase in swimming activity. Administration of 2.5 mg l−1 aspirin, 5 mg l−1 lidocaine and 48 mg l−1 morphine prevented the behavioural changes induced by acetic acid. These results suggest that larvae respond to a noxious challenge in a similar way to adult zebrafish and other vertebrates and that the effect of nociception on activity can be ameliorated by using analgesics. Therefore, adopting larval zebrafish could represent a direct replacement of a protected adult fish with a non-protected form in pain- and nociception-related research.
Collapse
Affiliation(s)
- Javier Lopez-Luna
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Qussay Al-Jubouri
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Waleed Al-Nuaimy
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Lynne U. Sneddon
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
37
|
Lopez-Luna J, Al-Jubouri Q, Al-Nuaimy W, Sneddon LU. Impact of analgesic drugs on the behavioural responses of larval zebrafish to potentially noxious temperatures. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Schroeder PG, Sneddon LU. Exploring the efficacy of immersion analgesics in zebrafish using an integrative approach. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2016.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Perception of Fish Sentience, Welfare and Humane Slaughter by Highly Educated Citizens of Bogotá, Colombia and Curitiba, Brazil. PLoS One 2017; 12:e0168197. [PMID: 28068372 PMCID: PMC5222424 DOI: 10.1371/journal.pone.0168197] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Discussions on farm animal welfare have become frequent, especially in developed countries. The aim of this research was to study the perception of fish sentience, welfare and slaughter by highly educated citizens from Bogotá, Colombia, and Curitiba, Brazil. An online survey with 12 questions presented as open-ended, multiple choice and 5-point Likert-type scale formats was available to respondents. Answers from 395 participants in Bogotá and 387 in Curitiba were analyzed, and results are presented in the order Bogotá followed by Curitiba. The percentage of participants who perceived fish as sentient animals was 79.7% and 71.8%. The classification of sentience perception among taxonomic groups seems in accordance with the phylogenetic proximity to humans, suggesting participants were more likely to perceive sentience in mammals than in other animals. The descending order related to the highest perception of fish suffering in different scenarios was fishing with hook and line (75.6%, 70.6%); municipal live fish fair (68.7%—only in Curitiba); fish-and-pay ponds (59.7%, 54.4%); fish kept as laboratory animals (58.0, 48.1%); fish farming (35.7, 36.8%); fish in pet stores (35.5%, 26.1%); production of ornamental fish (19.3%, 21.8%); fish in aquarium exhibits (18.8%,16.9%); and fish kept as pets (12.4%,12.3%). Lack of knowledge about the conditions of capture, handling, transport and sale of ornamental fish may justify the perception of low level of suffering in the last scenarios. Regarding humane slaughter, 57.0% and 55.0% of respondents were unaware of the issue. After reflection induced by the questionnaire, 76.0% and 72% of participants believed that fish should be included in humane slaughter regulations. This study presents original data suggesting that respondents from Bogotá and Curitiba consider fish as sentient beings. The perception of suffering in specific scenarios challenges common activities. Recognition of suffering also endorses humane slaughter regulations to reduce pain in a large number of individuals of fish slaughtered annually for human consumption in Colombia and Brazil.
Collapse
|
40
|
PHARMACOKINETIC EVALUATION OF MELOXICAM AFTER INTRAVENOUS AND INTRAMUSCULAR ADMINISTRATION IN NILE TILAPIA (OREOCHROMIS NILOTICUS). J Zoo Wildl Med 2017; 47:736-742. [PMID: 27691947 DOI: 10.1638/2015-0253.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Critically evaluating the pharmacokinetic behavior of a drug in the body provides crucial information about how to effectively treat a patient. Pharmacokinetic studies that exist in fish have primarily focused on drugs used to treat infectious disease, with minimal attention given to analgesic drugs. The objective of this study was to determine the pharmacokinetics of meloxicam (1 mg/kg) in Nile tilapia ( Oreochromis niloticus ) (n = 12). A single dose of meloxicam was administered either i.v. or i.m. Blood samples were obtained at predetermined times after drug injection. Plasma meloxicam concentrations were determined by a validated liquid chromatography/mass spectrometry method, and noncompartmental pharmacokinetic analysis was performed. The mean peak plasma concentration after i.m. injection was 1.95 μg/ml. The mean terminal half-life of meloxicam after i.v. and i.m. administration was 1.36 and 1.8 hr, respectively. The area under the plasma concentration-versus-time curve extrapolated to infinity was 11.26 hr·μg/ml after i.v. administration and 5.72 hr·μg/ml after i.m. administration. Bioavailability of meloxicam after i.m. administration was approximately half that of i.v. administration. Elimination was rapid in both the i.m. and i.v. routes of administration, suggesting that maintaining clinically relevant plasma concentrations may be difficult using this dose. This study represents the first pharmacokinetic evaluation of a nonsteroidal anti-inflammatory drug in a fish species, and further studies evaluating efficacy are needed.
Collapse
|
41
|
Baker TR, Baker BB, Johnson SM, Sladky KK. Comparative analgesic efficacy of morphine sulfate and butorphanol tartrate in koi (Cyprinus carpio) undergoing unilateral gonadectomy. J Am Vet Med Assoc 2016; 243:882-90. [PMID: 24004238 DOI: 10.2460/javma.243.6.882] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To identify pain-related behaviors and assess the effects of butorphanol tartrate and morphine sulfate in koi (Cyprinus carpio) undergoing unilateral gonadectomy. Design-Prospective study. ANIMALS 90 adult male and female koi. PROCEDURES Each fish received saline (0.9% NaCl) solution (which is physiologically compatible with fish) IM, butorphanol (10 mg/kg [4.5 mg/lb], IM), or morphine (5 mg/kg [2.3 mg/lb], IM) as an injection only (6 fish/treatment); an injection with anesthesia and surgery (12 fish/treatment); or an injection with anesthesia but without surgery (12 fish/treatment). Physiologic and behavioral data were recorded 12 hours before and at intervals after treatment. RESULTS Compared with baseline values, the saline solution-surgery group had significantly decreased respiratory rates (at 12 to 24 hours), food consumption assessed as a percentage of floating pellets consumed (at 0 to 36 hours), and activity score (at 0 to 48 hours). Respiratory rate decreased in all butorphanol-treated fish; significant decreases were detected at fewer time points following morphine administration. In the butorphanol-surgery group, the value for food consumption initially decreased but returned to baseline values within 3 hours after treatment; food consumption did not change in the morphine-surgery group. Surgery resulted in decreased activity, regardless of treatment, with the most pronounced effect in the saline solution-surgery group. Changes in location in water column, interactive behavior, and hiding behavior were not significantly different among groups. Butorphanol and morphine administration was associated with temporary buoyancy problems and temporary bouts of excessive activity, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Butorphanol and morphine appeared to have an analgesic effect in koi, but morphine administration caused fewer deleterious adverse effects. Food consumption appeared to be a reliable indicator of pain in koi.
Collapse
Affiliation(s)
- Tracie R Baker
- Department of Surgical Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
42
|
|
43
|
Radev Z, Hermel JM, Elipot Y, Bretaud S, Arnould S, Duchateau P, Ruggiero F, Joly JS, Sohm F. A TALEN-Exon Skipping Design for a Bethlem Myopathy Model in Zebrafish. PLoS One 2015. [PMID: 26221953 PMCID: PMC4519248 DOI: 10.1371/journal.pone.0133986] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Presently, human collagen VI-related diseases such as Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM) remain incurable, emphasizing the need to unravel their etiology and improve their treatments. In UCMD, symptom onset occurs early, and both diseases aggravate with ageing. In zebrafish fry, morpholinos reproduced early UCMD and BM symptoms but did not allow to study the late phenotype. Here, we produced the first zebrafish line with the human mutation frequently found in collagen VI-related disorders such as UCMD and BM. We used a transcription activator-like effector nuclease (TALEN) to design the col6a1ama605003-line with a mutation within an essential splice donor site, in intron 14 of the col6a1 gene, which provoke an in-frame skipping of exon 14 in the processed mRNA. This mutation at a splice donor site is the first example of a template-independent modification of splicing induced in zebrafish using a targetable nuclease. This technique is readily expandable to other organisms and can be instrumental in other disease studies. Histological and ultrastructural analyzes of homozygous and heterozygous mutant fry and 3 months post-fertilization (mpf) fish revealed co-dominantly inherited abnormal myofibers with disorganized myofibrils, enlarged sarcoplasmic reticulum, altered mitochondria and misaligned sarcomeres. Locomotion analyzes showed hypoxia-response behavior in 9 mpf col6a1 mutant unseen in 3 mpf fish. These symptoms worsened with ageing as described in patients with collagen VI deficiency. Thus, the col6a1ama605003-line is the first adult zebrafish model of collagen VI-related diseases; it will be instrumental both for basic research and drug discovery assays focusing on this type of disorders.
Collapse
Affiliation(s)
- Zlatko Radev
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
| | - Jean-Michel Hermel
- UMR 9197, INRA-CASBAH team, NEURO-Psi, CNRS, Gif sur Yvette, France
- * E-mail: (FS); (JMH)
| | - Yannick Elipot
- UMR 9197, DECA team, NEURO-Psi, CNRS, Gif sur Yvette, France
| | - Sandrine Bretaud
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | - Florence Ruggiero
- UMR 5242, Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | - Frédéric Sohm
- UMS 1374, AMAGEN, INRA, Jouy en Josas, Domaine de Vilvert, France
- UMS 3504, AMAGEN, CNRS, Gif-sur-Yvette, France
- * E-mail: (FS); (JMH)
| |
Collapse
|
44
|
GABAA-benzodiazepine receptors in the dorsomedial (Dm) telencephalon modulate restraint-induced antinociception in the fish Leporinus macrocephalus. Physiol Behav 2015; 147:175-82. [PMID: 25914173 DOI: 10.1016/j.physbeh.2015.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
The possibility that fish experience pain has been denied based on the absence of the neural substrates to support this "experience". In this context, the identification of brain regions involved in nociception modulation could provide important insights regarding the processing of nociceptive information in fish. Our study evaluated the participation of the GABAA-benzodiazepine receptor in the dorsomedial (Dm) telencephalon in restraint-induced antinociception in the fish Leporinus macrocephalus through the microinjection of the anxiolytic drug midazolam. The microinjection of midazolam in the Dm did not alter the nocifensive response; however, this drug did block the inhibition of the nocifensive response to formaldehyde promoted by restraint stress. The fish that received midazolam (40nmol) microinjection prior to restraint (3 or 5min), followed by subcutaneous injection with formaldehyde presented a higher distance traveled than the fish that received saline microinjection. This effect might reflect the specific action of midazolam on benzodiazepine receptors in the Dm telencephalon, as pre-treatment with flumazenil, a benzodiazepine receptor antagonist, inhibited the effects of this drug. In the present study, we present the first evidence demonstrating a role for the dorsomedial telencephalic region in the modulation of stress-induced antinociception in fish, revealing new perspectives in the understanding of nociceptive information processing in this group.
Collapse
|
45
|
Abstract
ABSTRACT
Recent developments in the study of pain in animals have demonstrated the potential for pain perception in a variety of wholly aquatic species such as molluscs, crustaceans and fish. This allows us to gain insight into how the ecological pressures and differential life history of living in a watery medium can yield novel data that inform the comparative physiology and evolution of pain. Nociception is the simple detection of potentially painful stimuli usually accompanied by a reflex withdrawal response, and nociceptors have been found in aquatic invertebrates such as the sea slug Aplysia. It would seem adaptive to have a warning system that allows animals to avoid life-threatening injury, yet debate does still continue over the capacity for non-mammalian species to experience the discomfort or suffering that is a key component of pain rather than a nociceptive reflex. Contemporary studies over the last 10 years have demonstrated that bony fish possess nociceptors that are similar to those in mammals; that they demonstrate pain-related changes in physiology and behaviour that are reduced by painkillers; that they exhibit higher brain activity when painfully stimulated; and that pain is more important than showing fear or anti-predator behaviour in bony fish. The neurophysiological basis of nociception or pain in fish is demonstrably similar to that in mammals. Pain perception in invertebrates is more controversial as they lack the vertebrate brain, yet recent research evidence confirms that there are behavioural changes in response to potentially painful events. This review will assess the field of pain perception in aquatic species, focusing on fish and selected invertebrate groups to interpret how research findings can inform our understanding of the physiology and evolution of pain. Further, if we accept these animals may be capable of experiencing the negative experience of pain, then the wider implications of human use of these animals should be considered.
Collapse
Affiliation(s)
- Lynne U. Sneddon
- University of Liverpool, Institute of Integrative Biology, The BioScience Building, Liverpool L69 7ZB, UK
| |
Collapse
|
46
|
Wolkers CPB, Barbosa Junior A, Menescal-de-Oliveira L, Hoffmann A. Acute administration of a cannabinoid CB1 receptor antagonist impairs stress-induced antinociception in fish. Physiol Behav 2015; 142:37-41. [PMID: 25656689 DOI: 10.1016/j.physbeh.2015.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/13/2022]
Abstract
This study evaluated the influence of the pre-treatment with AM251 (a cannabinoid type I receptor (CB1) selective antagonist) on the stress-induced antinociception promoted by restraint in the fish Leporinus macrocephalus. The application of 3 and 5 min of restraint stress promoted an inhibition of the behavioural response to the subcutaneous injection of 3% formaldehyde (increase in locomotor activity), suggesting the activation of an antinociceptive system. The acute intraperitoneal administration of AM251 (3 mg·kg(-1)) impaired this antinociceptive response induced by 3 and 5 min of restraint stress. The fish treated with AM251 before the application of restraint stress presented an increase in locomotor activity after the subcutaneous injection of formaldehyde, similar to fish not exposed to restraint, suggesting that the stress-induced antinociception promoted by restraint in fish is probably mediated by cannabinoid CB1 receptors. The results presented in this paper suggest the participation of the endocannabinoid system in nociception modulation in fish, supporting the hypothesis that an endogenous antinociceptive system activated by restraint stress is present in fish and that the modulation of antinociception by the CB1 receptor is evolutionary well-conserved across vertebrates.
Collapse
Affiliation(s)
- Carla Patrícia Bejo Wolkers
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil.
| | - Augusto Barbosa Junior
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil
| | - Leda Menescal-de-Oliveira
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil
| | - Anette Hoffmann
- School of Medicine of Ribeirão Preto, São Paulo University, Physiology Department, Bandeirantes Avenue 3900, Zip Code 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
47
|
Key B. Fish do not feel pain and its implications for understanding phenomenal consciousness. BIOLOGY & PHILOSOPHY 2014; 30:149-165. [PMID: 25798021 PMCID: PMC4356734 DOI: 10.1007/s10539-014-9469-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/06/2014] [Indexed: 05/28/2023]
Abstract
Phenomenal consciousness or the subjective experience of feeling sensory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental states to other animals. Humans will typically extrapolate feelings of pain to animals if they respond physiologically and behaviourally to noxious stimuli. The alternative view that fish instead respond to noxious stimuli reflexly and with a limited behavioural repertoire is defended within the context of our current understanding of the neuroanatomy and neurophysiology of mental states. Consequently, a set of fundamental properties of neural tissue necessary for feeling pain or experiencing affective states in vertebrates is proposed. While mammals and birds possess the prerequisite neural architecture for phenomenal consciousness, it is concluded that fish lack these essential characteristics and hence do not feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Australia
| |
Collapse
|
48
|
|
49
|
Brown C. Fish intelligence, sentience and ethics. Anim Cogn 2014; 18:1-17. [PMID: 24942105 DOI: 10.1007/s10071-014-0761-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 01/21/2023]
Abstract
Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people's perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal's intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any non-human vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate.
Collapse
Affiliation(s)
- Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia,
| |
Collapse
|
50
|
Eckroth JR, Aas-Hansen Ø, Sneddon LU, Bichão H, Døving KB. Physiological and behavioural responses to noxious stimuli in the Atlantic cod (Gadus morhua). PLoS One 2014; 9:e100150. [PMID: 24936652 PMCID: PMC4061104 DOI: 10.1371/journal.pone.0100150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 05/22/2014] [Indexed: 01/03/2023] Open
Abstract
In the present study, our aim was to compare physiological and behavioural responses to different noxious stimuli to those of a standardized innocuous stimulus, to possibly identify aversive responses indicative of injury detection in a commercially important marine teleost fish, the Atlantic cod. Individual fish were administered with a noxious stimulus to the lip under short-term general anaesthesia (MS-222). The noxious treatments included injection of 0.1% or 2% acetic acid, 0.005% or 0.1% capsaicin, or piercing the lip with a commercial fishing hook. Counts of opercular beat rate (OBR) at 10, 30, 60, 90 and 120 min and observations of behaviour at 30 and 90 min post-treatment were compared with pre-treatment values and with control fish injected with physiological saline, an innocuous stimulus. Circulatory levels of physiological stress indicators were determined in all fish at 120 minutes post-treatment. All treatments evoked temporarily increased OBR that returned to pre-treatment levels at 60 minutes (saline, 0.005% capsaicin, hook), 90 minutes (0.1% acetic acid, 0.1% capsaicin), or 120 minutes (2% acetic acid), but with no significant differences from the control group at any time point. Fish treated with 0.1% and 2% acetic acid and 0.1% capsaicin displayed increased hovering close to the bottom of the aquaria and fish given 2% acetic acid and 0.1% capsaicin also displayed a reduced use of shelter. The only effect seen in hooked fish was brief episodes of lateral head shaking which were not seen pre-treatment or in the other groups, possibly reflecting a resiliency to tissue damage in the mouth area related to the tough nature of the Atlantic cod diet. There were no differences between groups in circulatory stress indicators two hours after treatment. This study provides novel data on behavioural indicators that could be used to assess potentially aversive events in Atlantic cod.
Collapse
Affiliation(s)
- Jared R. Eckroth
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Øyvind Aas-Hansen
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima, Tromsø, Norway
- * E-mail:
| | - Lynne U. Sneddon
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Helena Bichão
- Norwegian Institute of Food, Fisheries and Aquaculture Research, Nofima, Tromsø, Norway
| | - Kjell B. Døving
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|