1
|
Frynta D, Tomanová L, Holubová K, Vobrubová B, Štolhoferová I, Rudolfová V. Structural consistency of exploratory behaviour of sub-adult and adult spiny mice (Acomys cahirinus) in seven different tests. Behav Processes 2024; 216:105003. [PMID: 38336236 DOI: 10.1016/j.beproc.2024.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/11/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The genus Acomys is of growing importance to many research fields. Previous research has shown that individuals differ when exploring new environments and that these behavioural strategies are consistent in time. In this study, we subjected 60 commensal Acomys cahirinus (37 males, 23 females) to a series of seven tests (free exploration, forced exploration under bright illumination, forced exploration under low illumination, hole board test, vertical activity test, elevated plus maze, and voluntary wheel running) to acquire independent behavioural traits and investigate whether and how personality develops in spiny mice. The full series of experiments was performed twice during ontogeny: once in the sub-adult stage (tested at 62-72 days of age) and once in the adult stage (102-112 days of age). We found that behaviour of the animals was repeatable both within (range of R values from 0.155 to 0.726) and across the two life-stages (0.238 to 0.563). While the structure of behaviour in adults was rather clear, it had not been fully crystalized in sub-adults, suggesting personality changes during maturation, even though some individual traits might be repeatable across ontogeny. Notably, the most consistent behavioural traits across the different tests were jumping and rearing, which are not commonly reported.
Collapse
Affiliation(s)
- Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czechia
| | - Lenka Tomanová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czechia
| | - Kristína Holubová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czechia; National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia
| | - Barbora Vobrubová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czechia
| | - Iveta Štolhoferová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czechia.
| | - Veronika Rudolfová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czechia; National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia
| |
Collapse
|
2
|
Dissegna A, Borrelli L, Ponte G, Chiandetti C, Fiorito G. Octopus vulgaris Exhibits Interindividual Differences in Behavioural and Problem-Solving Performance. BIOLOGY 2023; 12:1487. [PMID: 38132313 PMCID: PMC10740590 DOI: 10.3390/biology12121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
By presenting individual Octopus vulgaris with an extractive foraging problem with a puzzle box, we examined the possible correlation between behavioural performances (e.g., ease of adaptation to captive conditions, prevalence of neophobic and neophilic behaviours, and propensity to learn individually or by observing conspecifics), biotic (body and brain size, age, sex) and abiotic (seasonality and place of origin) factors. We found more neophilic animals showing shorter latencies to approach the puzzle box and higher probability of solving the task; also, shorter times to solve the task were correlated with better performance on the individual learning task. However, the most neophilic octopuses that approached the puzzle box more quickly did not reach the solution earlier than other individuals, suggesting that strong neophilic tendency may lead to suboptimal performance at some stages of the problem-solving process. In addition, seasonal and environmental characteristics of location of origin appear to influence the rate of expression of individual traits central to problem solving. Overall, our analysis provides new insights into the traits associated with problem solving in invertebrates and highlights the presence of adaptive mechanisms that promote population-level changes in octopuses' behavioural traits.
Collapse
Affiliation(s)
- Andrea Dissegna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.); (C.C.)
| | - Luciana Borrelli
- Animal Physiology and Evolution Lab, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Cinzia Chiandetti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.D.); (C.C.)
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
3
|
Casalini A, Gentile L, Emmanuele P, Brusa R, Elmi A, Parmeggiani A, Galosi L, Roncarati A, Mordenti O. Effects of Environmental Enrichment on the Behavior of Octopus vulgaris in a Recirculating Aquaculture System. Animals (Basel) 2023; 13:1862. [PMID: 37889785 PMCID: PMC10251970 DOI: 10.3390/ani13111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 10/29/2023] Open
Abstract
Octopus vulgaris is a commercially valuable species. It is overexploited in the natural environment and is considered to be an innovative species for aquaculture. However, large-scale farming is generally designed only based on economic requirements, disregarding any form of enrichment that induces the natural behavior of aquatic species. Although many studies have shown the influence of environmental enrichment on terrestrial vertebrates, fish, and cephalopod mollusks, information on the effect of environmental enrichment on the body patterns of O. vulgaris is limited. Therefore, in this study, we assessed how different environmental conditions (Basic vs. Enriched) affect sub-adults of O. vulgaris kept in recirculation systems, through qualitative-quantitative studies of the main body patterns and their potential application in the commercial production of this species. The results indicated that octopuses kept in the enriched environment showed several body patterns and gained a significantly higher weight than those kept in the basic environment. The body patterns displayed by the individuals kept in the basic environment were similar to those exhibited under situations of hostility and inter/intra-specific conflict. Hence, the environment of octopuses needs to be enriched, especially for the large-scale production of this species.
Collapse
Affiliation(s)
- Antonio Casalini
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Laura Gentile
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Pietro Emmanuele
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Riccardo Brusa
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Albamaria Parmeggiani
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy; (L.G.); (A.R.)
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy; (L.G.); (A.R.)
| | - Oliviero Mordenti
- Department of Veterinary Medical Sciences—DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.C.); (P.E.); (R.B.); (A.E.); (A.P.); (O.M.)
| |
Collapse
|
4
|
Pacheco XP. How consistently do personality attributes relate to an individual’s position within a social network: a comparison across groups of captive meerkats. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02880-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Urbánková G, Šíchová K, Riegert J, Horsley R, Mladěnková N, Starck‐Lantová P, Sedláček F. Lifetime low behavioural plasticity of personality traits in the common vole (
Microtus arvalis
) under laboratory conditions. Ethology 2020. [DOI: 10.1111/eth.13039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gabriela Urbánková
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Klára Šíchová
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
- National Institute of Mental Health Klecany near Prague Czech Republic
| | - Jan Riegert
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - Rachel Horsley
- National Institute of Mental Health Klecany near Prague Czech Republic
| | - Nella Mladěnková
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | | | - František Sedláček
- Faculty of Science University of South Bohemia České Budějovice Czech Republic
| |
Collapse
|
6
|
Feord RC, Sumner ME, Pusdekar S, Kalra L, Gonzalez-Bellido PT, Wardill TJ. Cuttlefish use stereopsis to strike at prey. SCIENCE ADVANCES 2020; 6:eaay6036. [PMID: 31934631 PMCID: PMC6949036 DOI: 10.1126/sciadv.aay6036] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
The camera-type eyes of vertebrates and cephalopods exhibit remarkable convergence, but it is currently unknown whether the mechanisms for visual information processing in these brains, which exhibit wildly disparate architecture, are also shared. To investigate stereopsis in a cephalopod species, we affixed "anaglyph" glasses to cuttlefish and used a three-dimensional perception paradigm. We show that (i) cuttlefish have also evolved stereopsis (i.e., the ability to extract depth information from the disparity between left and right visual fields); (ii) when stereopsis information is intact, the time and distance covered before striking at a target are shorter; (iii) stereopsis in cuttlefish works differently to vertebrates, as cuttlefish can extract stereopsis cues from anticorrelated stimuli. These findings demonstrate that although there is convergent evolution in depth computation, cuttlefish stereopsis is likely afforded by a different algorithm than in humans, and not just a different implementation.
Collapse
Affiliation(s)
- R. C. Feord
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - M. E. Sumner
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - S. Pusdekar
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - L. Kalra
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - P. T. Gonzalez-Bellido
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Trevor J. Wardill
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
7
|
Centorame M, Angelino D, Bonanni R, Fanfani A. Static and evolutionary allometry in the Italian endemic ant species Cataglyphis italica (Emery 1906). ETHOL ECOL EVOL 2019. [DOI: 10.1080/03949370.2019.1639080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Massimiliano Centorame
- Department of Biology and Biotecnology ‘Charles Darwin’, ‘Sapienza’ University of Rome, Viale dell’Università 32, Rome 00185, Italy
| | - Davide Angelino
- Department of Biology and Biotecnology ‘Charles Darwin’, ‘Sapienza’ University of Rome, Viale dell’Università 32, Rome 00185, Italy
| | - Roberto Bonanni
- Independent researcher, Via Giuseppe Donati 32, Rome 00159, Italy
| | - Alberto Fanfani
- Department of Biology and Biotecnology ‘Charles Darwin’, ‘Sapienza’ University of Rome, Viale dell’Università 32, Rome 00185, Italy
| |
Collapse
|
8
|
|
9
|
Ponte G, Andrews P, Galligioni V, Pereira J, Fiorito G. Cephalopod Welfare, Biological and Regulatory Aspects: An EU Experience. Anim Welf 2019. [DOI: 10.1007/978-3-030-13947-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
|
11
|
Labaude S, O'Donnell N, Griffin CT. Description of a personality syndrome in a common and invasive ground beetle (Coleoptera: Carabidae). Sci Rep 2018; 8:17479. [PMID: 30504923 PMCID: PMC6269510 DOI: 10.1038/s41598-018-35569-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
Animal personality, defined as consistent differences among individuals in their behaviour, is being increasingly studied as it might lead to a new understanding of the evolution of behaviours. Despite a clear interest in studying personality in a wide range of taxa for comparative analyses, studies on invertebrates are still scarce. Here, we investigated the personality of a ground beetle, Nebria brevicollis, which is widespread in Europe and invasive in North America. We measured seven behavioural traits from an array of three different tests: (i) activity and exploration related traits; (ii) reaction to a threat, and (iii) phototaxis. The repeatability was tested by measuring all behaviours twice, on different days. All behavioural traits were consistent through time, highlighting the presence of personality in the beetle. In addition, we analysed the relationship between the different traits and highlighted two clusters of behaviours (behavioural syndrome), one grouping activity, exploration and boldness traits, and a second one consisting of responses to a threat. This study is the first to our knowledge to provide evidence for personality dimensions within the vast group of the Carabidae. It also constitutes a preliminary step in the experimental investigation of the importance of animal personality in invasive species.
Collapse
Affiliation(s)
- Sophie Labaude
- Department of Biology, Maynooth University, Maynooth, Ireland.
| | - Niamh O'Donnell
- Department of Biology, Maynooth University, Maynooth, Ireland
| | | |
Collapse
|
12
|
Zoratto F, Cordeschi G, Grignani G, Bonanni R, Alleva E, Nascetti G, Mather JA, Carere C. Variability in the "stereotyped" prey capture sequence of male cuttlefish (Sepia officinalis) could relate to personality differences. Anim Cogn 2018; 21:773-785. [PMID: 30178104 DOI: 10.1007/s10071-018-1209-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022]
Abstract
Studies of animal personality have shown consistent between-individual variation in behaviour in many social and non-social contexts, but hunting behaviour has been overlooked. Prey capture sequences, especially in invertebrates, are supposed to be quite invariant. In cuttlefish, the attack includes three components: attention, positioning, and seizure. The previous studies indicated some variability in these components and we quantified it under the hypothesis that it could relate to personality differences. We, therefore, analysed predation sequences of adult cuttlefish to test their association with personality traits in different contexts. Nineteen subjects were first exposed to an "alert" and a "threat" test and then given a live prey, for 10 days. Predation sequences were scored for components of the attack, locomotor and postural elements, body patterns, and number of successful tentacle ejections (i.e. seizure). PCA analysis of predatory patterns identified three dimensions accounting for 53.1%, 15.9%, and 9.6% of the variance and discriminating individuals based on "speed in catching prey", "duration of attack behaviour", and "attention to prey". Predation rate, success rate, and hunting time were significantly correlated with the first, second, and third PCA factors, respectively. Significant correlations between capture patterns and responsiveness in the alert and threat tests were found, highlighting a consistency of prey capture patterns with measures of personality in other contexts. Personality may permeate even those behaviour patterns that appear relatively invariant.
Collapse
Affiliation(s)
- Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Giulia Cordeschi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giacomo Grignani
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, University of Tuscia, Tarquinia, Viterbo, Italy
| | - Roberto Bonanni
- Independent Researcher, Via Giuseppe Donati 32, 00159, Rome, Italy
| | - Enrico Alleva
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giuseppe Nascetti
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, University of Tuscia, Tarquinia, Viterbo, Italy
| | - Jennifer A Mather
- Department of Psychology, University of Lethbridge, Lethbridge, Canada
| | - Claudio Carere
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, University of Tuscia, Tarquinia, Viterbo, Italy.,Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| |
Collapse
|
13
|
O’Brien CE, Roumbedakis K, Winkelmann IE. The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Front Physiol 2018; 9:700. [PMID: 29962956 PMCID: PMC6014164 DOI: 10.3389/fphys.2018.00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Here, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored: genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
- Association for Cephalopod Research – CephRes, Naples, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research – CephRes, Naples, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Inger E. Winkelmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Angeletti D, Sebbio C, Carlini A, Strinati C, Nascetti G, Carere C, Cimmaruta R. The role of habitat choice in micro-evolutionary dynamics: An experimental study on the Mediterranean killifish Aphanius fasciatus (Cyprinodontidae). Ecol Evol 2018; 7:10536-10545. [PMID: 29299235 PMCID: PMC5743487 DOI: 10.1002/ece3.3540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/30/2022] Open
Abstract
Habitat choice is defined as a nonrandom distribution of genotypes in different microhabitats. Therefore, it could exert a great impact on the genetic variance of natural populations by promoting genetic divergence, local adaptation, and may even lead to sympatric speciation. Despite this potential role in micro‐ and macro‐evolutionary processes, there is little empirical evidence that the various genotypes within a population may differ in habitat choice‐related behaviors. Here, we tested whether habitat choice may have contributed to genetic divergence within a local population of the Mediterranean killifish Aphanius fasciatus, which emerged between groups inhabiting microhabitats with different oxygen concentrations during previous field studies. In a first experiment, we studied the distribution of individuals in conditions of hypoxia and normoxia to test whether they had a different ability to shy away from a hypoxic environment; in a second experiment, we analyzed the individual behavior of fish separately in the two conditions, to verify whether they showed peculiar behavioral responses linked to a possible differential distribution. We then analyzed the six allozyme loci, whose allelic and genotypic frequencies were significantly divergent in the previous studies. In the first test, we found that the distribution of the two homozygote genotypes of the glucose‐6‐phosphate isomerase‐1 locus (GPI‐1) was significantly different between the hypoxic and the normoxic conditions. During the second test, all individuals were more active in hypoxic conditions, but the two GPI‐1 homozygotes showed a significant difference in time spent performing surface breathing, which was consistent with their distribution observed in the first experiment. These results provide evidence that individual behavioral traits, related to genetic features, may lead to a nonrandom distribution of genotypes in heterogeneous although contiguous microhabitats and, consequently, that habitat choice can play a significant role in driving the micro‐evolutionary dynamics of this species.
Collapse
Affiliation(s)
- Dario Angeletti
- Department of Ecological and Biological Sciences Ichthyogenic Experimental Marine Center (CISMAR) Tuscia University Tarquinia VT Italy
| | - Claudia Sebbio
- Department of Ecological and Biological Sciences Ichthyogenic Experimental Marine Center (CISMAR) Tuscia University Tarquinia VT Italy.,Department of Monitoring of Environmental Quality Italian National Institute for Environmental Protection and Research (ISPRA) Rome Italy
| | - Alessandro Carlini
- Department of Ecological and Biological Sciences Ichthyogenic Experimental Marine Center (CISMAR) Tuscia University Tarquinia VT Italy
| | - Claudia Strinati
- Department of Ecological and Biological Sciences Ichthyogenic Experimental Marine Center (CISMAR) Tuscia University Tarquinia VT Italy
| | - Giuseppe Nascetti
- Department of Ecological and Biological Sciences Ichthyogenic Experimental Marine Center (CISMAR) Tuscia University Tarquinia VT Italy
| | - Claudio Carere
- Department of Ecological and Biological Sciences Ichthyogenic Experimental Marine Center (CISMAR) Tuscia University Tarquinia VT Italy
| | - Roberta Cimmaruta
- Department of Ecological and Biological Sciences Ichthyogenic Experimental Marine Center (CISMAR) Tuscia University Tarquinia VT Italy
| |
Collapse
|
15
|
Ponte G, Sykes AV, Cooke GM, Almansa E, Andrews PLR. The Digestive Tract of Cephalopods: Toward Non-invasive In vivo Monitoring of Its Physiology. Front Physiol 2017; 8:403. [PMID: 28674501 PMCID: PMC5474479 DOI: 10.3389/fphys.2017.00403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/29/2017] [Indexed: 12/24/2022] Open
Abstract
Ensuring the health and welfare of animals in research is paramount, and the normal functioning of the digestive tract is essential for both. Here we critically assess non- or minimally-invasive techniques which may be used to assess a cephalopod's digestive tract functionality to inform health monitoring. We focus on: (i) predatory response as an indication of appetitive drive; (ii) body weight assessment and interpretation of deviations (e.g., digestive gland weight loss is disproportionate to body weight loss in starvation); (iii) oro-anal transit time requiring novel, standardized techniques to facilitate comparative studies of species and diets; (iv) defecation frequency and analysis of fecal color (diet dependent) and composition (parasites, biomarkers, and cytology); (v) digestive tract endoscopy, but passage of the esophagus through the brain is a technical challenge; (vi) high resolution ultrasound that offers the possibility of imaging the morphology of the digestive tract (e.g., food distribution, indigestible residues, obstruction) and recording contractile activity; (vii) needle biopsy (with ultrasound guidance) as a technique for investigating digestive gland biochemistry and pathology without the death of the animal. These techniques will inform the development of physiologically based assessments of health and the impact of experimental procedures. Although intended for use in the laboratory they are equally applicable to cephalopods in public display and aquaculture.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy.,Association for Cephalopod Research (CephRes)Naples, Italy
| | - Antonio V Sykes
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do AlgarveFaro, Portugal
| | - Gavan M Cooke
- Department of Life Sciences, Anglia Ruskin UniversityCambridge, United Kingdom
| | - Eduardo Almansa
- Centro Oceanográfico de Canarias, Instituto Español de OceanografíaSanta Cruz de Tenerife, Spain
| | - Paul L R Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton DohrnNaples, Italy.,Association for Cephalopod Research (CephRes)Naples, Italy
| |
Collapse
|
16
|
Abstract
Predictions which invoke evolutionary mechanisms are hard to test. Agent-based modeling in artificial life offers a way to simulate behaviors and interactions in specific physical or social environments over many generations. The outcomes have implications for understanding adaptive value of behaviors in context. Pain-related behavior in animals is communicated to other animals that might protect or help, or might exploit or predate. An agent-based model simulated the effects of displaying or not displaying pain (expresser/nonexpresser strategies) when injured and of helping, ignoring, or exploiting another in pain (altruistic/nonaltruistic/selfish strategies). Agents modeled in MATLAB interacted at random while foraging (gaining energy); random injury interrupted foraging for a fixed time unless help from an altruistic agent, who paid an energy cost, speeded recovery. Environmental and social conditions also varied, and each model ran for 10,000 iterations. Findings were meaningful in that, in general, contingencies that evident from experimental work with a variety of mammals, over a few interactions, were replicated in the agent-based model after selection pressure over many generations. More energy-demanding expression of pain reduced its frequency in successive generations, and increasing injury frequency resulted in fewer expressers and altruists. Allowing exploitation of injured agents decreased expression of pain to near zero, but altruists remained. Decreasing costs or increasing benefits of helping hardly changed its frequency, whereas increasing interaction rate between injured agents and helpers diminished the benefits to both. Agent-based modeling allows simulation of complex behaviors and environmental pressures over evolutionary time.
Collapse
|