1
|
Mitchell NL, Russell KN, Barrell GK, Tammen I, Palmer DN. Characterization of neuropathology in ovine CLN5 and CLN6 neuronal ceroid lipofuscinoses (Batten disease). Dev Neurobiol 2023; 83:127-142. [PMID: 37246363 DOI: 10.1002/dneu.22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/26/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Sheep with naturally occurring CLN5 and CLN6 forms of neuronal ceroid lipofuscinoses (Batten disease) share the key clinical features of the human disease and represent an ideal model system in which the clinical efficacy of gene therapies is developed and test. However, it was first important to characterize the neuropathological changes that occur with disease progression in affected sheep. This study compared neurodegeneration, neuroinflammation, and lysosomal storage accumulation in CLN5 affected Borderdale, CLN6 affected South Hampshire, and Merino sheep brains from birth to end-stage disease at ≤24 months of age. Despite very different gene products, mutations, and subcellular localizations, the pathogenic cascade was remarkably similar for all three disease models. Glial activation was present at birth in affected sheep and preceded neuronal loss, with both spreading from the visual and parieto-occipital cortices most prominently associated with clinical symptoms to the entire cortical mantle by end-stage disease. In contrast, the subcortical regions were less involved, yet lysosomal storage followed a near-linear increase across the diseased sheep brain with age. Correlation of these neuropathological changes with published clinical data identified three potential therapeutic windows in affected sheep-presymptomatic (3 months), early symptomatic (6 months), and a later symptomatic disease stage (9 months of age)-beyond which the extensive depletion of neurons was likely to diminish any chance of therapeutic benefit. This comprehensive natural history of the neuropathological changes in ovine CLN5 and CLN6 disease will be integral in determining what impact treatment has at each of these disease stages.
Collapse
Affiliation(s)
- Nadia L Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Katharina N Russell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Graham K Barrell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Imke Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camperdown, New South Wales, Australia
| | - David N Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
4
|
Nelvagal HR, Eaton SL, Wang SH, Eultgen EM, Takahashi K, Le SQ, Nesbitt R, Dearborn JT, Siano N, Puhl AC, Dickson PI, Thompson G, Murdoch F, Brennan PM, Gray M, Greenhalgh SN, Tennant P, Gregson R, Clutton E, Nixon J, Proudfoot C, Guido S, Lillico SG, Whitelaw CBA, Lu JY, Hofmann SL, Ekins S, Sands MS, Wishart TM, Cooper JD. Cross-species efficacy of enzyme replacement therapy for CLN1 disease in mice and sheep. J Clin Invest 2022; 132:163107. [PMID: 36040802 PMCID: PMC9566914 DOI: 10.1172/jci163107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
CLN1 disease, also called infantile neuronal ceroid lipofuscinosis (NCL) or infantile Batten disease, is a fatal neurodegenerative lysosomal storage disorder resulting from mutations in the CLN1 gene encoding the soluble lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1). Therapies for CLN1 disease have proven challenging because of the aggressive disease course and the need to treat widespread areas of the brain and spinal cord. Indeed, gene therapy has proven less effective for CLN1 disease than for other similar lysosomal enzyme deficiencies. We therefore tested the efficacy of enzyme replacement therapy (ERT) by administering monthly infusions of recombinant human PPT1 (rhPPT1) to PPT1-deficient mice (Cln1-/-) and CLN1R151X sheep to assess how to potentially scale up for translation. In Cln1-/- mice, intracerebrovascular (i.c.v.) rhPPT1 delivery was the most effective route of administration, resulting in therapeutically relevant CNS levels of PPT1 activity. rhPPT1-treated mice had improved motor function, reduced disease-associated pathology, and diminished neuronal loss. In CLN1R151X sheep, i.c.v. infusions resulted in widespread rhPPT1 distribution and positive treatment effects measured by quantitative structural MRI and neuropathology. This study demonstrates the feasibility and therapeutic efficacy of i.c.v. rhPPT1 ERT. These findings represent a key step toward clinical testing of ERT in children with CLN1 disease and highlight the importance of a cross-species approach to developing a successful treatment strategy.
Collapse
Affiliation(s)
- Hemanth R. Nelvagal
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Samantha L. Eaton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Sophie H. Wang
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth M. Eultgen
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Keigo Takahashi
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Steven Q. Le
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Rachel Nesbitt
- Department of Medicine, Washington University in St. Louis, School of Medicine, St .Louis, Missouri, USA
| | - Joshua T. Dearborn
- Department of Medicine, Washington University in St. Louis, School of Medicine, St .Louis, Missouri, USA
| | - Nicholas Siano
- Discovery Science Division, Amicus Therapeutics Inc., Philadelphia, Pennsylvania, USA
| | - Ana C. Puhl
- Collaborations Pharmaceuticals Inc., Lab 3510, Raleigh, North Carolina, USA
| | - Patricia I. Dickson
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, Scotland, United Kingdom
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Fraser Murdoch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Paul M. Brennan
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, Edinburgh, Scotland, United Kingdom
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Mark Gray
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
- The Large Animal Research and Imaging Facility (LARIF), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Stephen N. Greenhalgh
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
- The Large Animal Research and Imaging Facility (LARIF), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Peter Tennant
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
- The Large Animal Research and Imaging Facility (LARIF), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Rachael Gregson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
- The Large Animal Research and Imaging Facility (LARIF), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Eddie Clutton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
- The Large Animal Research and Imaging Facility (LARIF), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - James Nixon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
- The Large Animal Research and Imaging Facility (LARIF), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Chris Proudfoot
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
- The Large Animal Research and Imaging Facility (LARIF), Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Stefano Guido
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Simon G. Lillico
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Jui-Yun Lu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L. Hofmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., Lab 3510, Raleigh, North Carolina, USA
| | - Mark S. Sands
- Department of Medicine, Washington University in St. Louis, School of Medicine, St .Louis, Missouri, USA
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Thomas M. Wishart
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Easter Bush, Scotland, United Kingdom
| | - Jonathan D. Cooper
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|