1
|
Price NW, Yijung L, Chen KS, Tang CH, Chen CF, Cheng MC, Wen CKC. Acute noise is harmful on the anti-predator behaviour of commercially important juvenile coral reef fishes. Behav Processes 2023:104908. [PMID: 37364624 DOI: 10.1016/j.beproc.2023.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Fish stock enhancement has been utilised in Taiwan for more than 30 years, yet the impacts of anthropogenic noise on the enhancement programs remain unknown. Anthropogenic noise can induce physiological and behavioural changes in many marine fishes. Therefore, we investigated the effects of acute boat noise (from stock enhancement release sites) and chronic noise (from aquaculture processes) on the anti-predator behaviour in three juvenile reef fishes: Epinephelus coioides, Amphiprion ocellaris and Neoglyphidodon melas. We exposed fish to aquaculture noise, boat noise and a combination of both, followed by a predator scare and documented kinematic variables (response latency, response distance, response speed and response duration). For the grouper E. coioides, their response latency decreased in the presence of acute noise, while their response duration increased in the presence of both chronic and acute noise. Among the anemonefish A. ocellaris, all variables remained unaffected by chronic noise, whereas acute noise increased the response distance and response speed. In the case of the black damselfish N. melas, chronic noise decreased the response speed, while acute noise decreased the response latency and response duration. Our results indicate that acute noise had a stronger influence on anti-predator behaviour than chronic noise. This study suggests that acute noise levels at restocking release sites can impact anti-predator behaviour in fishes, potentially altering fitness and likelihood of survival. Such negative effects and interspecific differences must be considered when restocking fish populations.
Collapse
Affiliation(s)
- Nathan William Price
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Life Science, Tunghai University, Xitun District, Taichung 40704, Taiwan
| | - Liu Yijung
- Department of Life Science, Tunghai University, Xitun District, Taichung 40704, Taiwan
| | - Kao-Sung Chen
- Planning and Information Division, Fisheries Research Institute, Council of Agriculture, Keelung 202008, Taiwan
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chi-Fang Chen
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chung Cheng
- Eastern Marine Biology Research Center, Fisheries Research Institute, Council of Agriculture, Taitung, Taiwan
| | - Colin Kuo-Chang Wen
- Department of Life Science, Tunghai University, Xitun District, Taichung 40704, Taiwan; Center for Ecology and Environment, Tunghai University, Xitun District, Taichung 40704, Taiwan.
| |
Collapse
|
2
|
Crane AL, Brown GE, Chivers DP, Ferrari MCO. An ecological framework of neophobia: from cells to organisms to populations. Biol Rev Camb Philos Soc 2020; 95:218-231. [PMID: 31599483 DOI: 10.1111/brv.12560] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023]
Abstract
Neophobia is the fear of novel stimuli or situations. This phenotype has recently received much ecological attention, primarily in the context of decision making. Here, we explore neophobia across biological levels of organisation, first describing types of neophobia among animals and the underlying causes of neophobia, highlighting high levels of risk and uncertainty as key drivers. We place neophobia in the framework of Error Management Theory and Signal Detection Theory, showing how increases in overall risk and uncertainty can lead to costly non-responses towards novel threats unless individuals lower their response threshold and become neophobic. We then discuss how neophobic behaviour translates into population and evolutionary consequences before introducing neophobia-like processes at the cellular level, where some phenomena such as allergy and autoimmunity can parallel neophobic behaviour. Finally, we discuss neophobia attenuation, considering how a sudden change in the environment from dangerous to safe can lead to problematic over-responses (i.e. the 'maladaptive defensive carry-over' hypothesis), and discuss treatment methods for such over-responses. We anticipate that bridging the concept of neophobia with a process-centered perspective can facilitate a transfer of insight across organisational levels.
Collapse
Affiliation(s)
- Adam L Crane
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada.,Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Grant E Brown
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Pl., Saskatoon, SK, S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|