1
|
Kirton R, Sandford I, Raffan E, Hallsworth S, Burman OHP, Morgan R. The impact of restricted grazing systems on the behaviour and welfare of ponies. Equine Vet J 2024. [PMID: 39275860 DOI: 10.1111/evj.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 09/16/2024]
Abstract
BACKGROUND Equine obesity is a growing concern. Much of the current management advice centres on dietary restrictions, including the removal or limitation of grazing. Little is known about the impact of these approaches on the welfare of the horse. OBJECTIVE This study investigates the effect of two commonly used grazing systems advocated for the control of weight-the 'strip-grazing' and the 'track' systems-on the behaviour and welfare of outdoor-living ponies. STUDY DESIGN A within-subject cross-over experimental design with four groups of pasture-kept ponies experiencing each system for 4 weeks in a random order. METHODS Time budgets and behavioural indicators of welfare were measured using 24-h electronic surveillance, morphometric parameters including weight, body condition score and cresty neck score were measured weekly and activity levels were tracked. The effect of grazing system on movement and behaviour was tested using a general linear model. RESULTS Ponies moved more [median (IQR) % time spent moving, track: 3.23% (2.08%), strip: 2.02% (0.90%); p = 0.001] and travelled a greater distance [median (IQR) metres/24 h, track: 7013.47 m (1761.49 m), strip: 5331.91 m (494.16 m); p < 0.001] and engaged in less overt agonistic behaviour on the track system compared with the strip system [median (IQR) prevalence per hour; track: 0.14 (0.30), strip: 0.21 (0.37) p = 0.02]. MAIN LIMITATIONS A relatively short time period of exposure to each grazing system. CONCLUSIONS Ponies on strip systems moved less and exhibited increased agonistic interactions compared with the track system, maybe as a result of a perceived reduction in space or concentration of resources, although the accessible areas were matched. These results suggest that there may be physical as well as psychological health benefits to the track system.
Collapse
Affiliation(s)
- Roxane Kirton
- Redwings Horse Sanctuary, Norwich, UK
- School of Life & Environmental Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| | - Imogen Sandford
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Eleanor Raffan
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Oliver H P Burman
- School of Life & Environmental Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, UK
| | - Ruth Morgan
- Scotland's Rural College, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, UK
| |
Collapse
|
2
|
Ratuski AS, Améndola L, Makowska IJ, Weary DM. Effects of temporary access to environmental enrichment on measures of laboratory mouse welfare. Sci Rep 2024; 14:15143. [PMID: 38956228 PMCID: PMC11219853 DOI: 10.1038/s41598-024-65480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Laboratory mice are typically housed in "shoebox" cages with limited opportunities to engage in natural behaviour. Temporary access to environments with increased space and complexity (playpens) may improve mouse welfare. Previous work by our group has shown that mice are motivated to access and use these environments, but it is unknown how other aspects of welfare are impacted. Female C57BL/6J, BALB/cJ, and DBA/2J mice (n = 21; 7 mice per strain) were housed in mixed-strain trios and given temporary access to a large playpen with their cage mates three times per week. Control mice (n = 21; 7 mice per strain) remained in their home cages. Home cage behaviour (development of stereotypic behaviour over time, aggression following cage-changing) and anxiety tests were used to assess how playpen access impacted welfare. Contrary to our predictions, we found increased time spent performing stereotypies in playpen mice; this difference may be related to negative emotional states, increased motivation to escape the home cage, or active coping strategies. Playpen access resulted in strain-dependent improvements in aggression and some measures of anxiety. Aggression was lower for C57BL/6J mice in the playpen treatment following cage changing than it was for C57BL/6J control mice, while playpen mice, and particularly the C57BL/6J strain, spent more time in the center of the open field test and produced fewer fecal boli during anxiety testing, supporting other research showing that strain differences play an important role in behaviour and stress resiliency.
Collapse
Affiliation(s)
- A S Ratuski
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada.
| | - L Améndola
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - I J Makowska
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| | - D M Weary
- UBC Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Schmitt O, Finnegan E, Trevarthen A, Wongsaengchan C, Paul ES, Mendl M, Fureix C. Exploring the similarities between risk factors triggering depression in humans and elevated in-cage "inactive but awake" behavior in laboratory mice. Front Vet Sci 2024; 11:1348928. [PMID: 38605924 PMCID: PMC11008528 DOI: 10.3389/fvets.2024.1348928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction Depression is a human mental disorder that can also be inferred in non-human animals. This study explored whether time spent inactive but awake ("IBA") in the home-cage in mice was further triggered by risk factors similar to those increasing vulnerability to depression in humans (early life stress, genetic predispositions, adulthood stress). Methods Eighteen DBA/2 J and 18 C57BL/6 J females were tested, of which half underwent as pups a daily maternal separation on post-natal days 2-14 (early-life stress "ELS") (other half left undisturbed). To assess the effect of the procedure, the time the dams from which the 18 subjects were born spent active in the nest (proxy for maternal behavior) was recorded on post-natal days 2, 6, 10 and 14 for 1 h before separation and following reunion (matched times for controls), using live instantaneous scan sampling (total: 96 scans/dam). For each ELS condition, about half of the pups were housed post-weaning (i.e., from 27 days old on average) in either barren (triggering IBA and depression-like symptoms) or larger, highly enriched cages (n = 4-5 per group). Time mice spent IBA post-weaning was observed blind to ELS treatment using live instantaneous scan sampling in two daily 90-min blocks, two days/week, for 6 weeks (total: 192 scans/mouse). Data were analyzed in R using generalized linear mixed models. Results The dams were significantly more active in the nest over time (p = 0.016), however with no significant difference between strains (p = 0.18), ELS conditions (p = 0.20) and before/after separation (p = 0.83). As predicted, post-weaning barren cages triggered significantly more time spent IBA in mice than enriched cages (p < 0.0001). However, neither ELS (p = 0.4) nor strain (p = 0.84) significantly influenced time mice spent IBA, with no significant interaction with environmental condition (ELS × environment: p = 0.2861; strain × environment: p = 0.5713). Discussion Our results therefore only partly support the hypothesis that greater time spent IBA in mice is triggered by risk factors for human depression. We discuss possible explanations for this and further research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carole Fureix
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
4
|
Kitchenham L, MacLellan A, Paletta P, Patel A, Choleris E, Mason G. Do housing-induced changes in brain activity cause stereotypic behaviours in laboratory mice? Behav Brain Res 2024; 462:114862. [PMID: 38216059 DOI: 10.1016/j.bbr.2024.114862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/30/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Abnormal repetitive stereotypic behaviours (SBs) (e.g. pacing, body-rocking) are common in animals with poor welfare (e.g. socially isolated/in barren housing). But how (or even whether) poor housing alters animals' brains to induce SBs remains uncertain. To date, there is little evidence for environmental effects on the brain that also correlate with individual SB performance. Using female mice from two strains (SB-prone DBA/2s; SB-resistant C57/BL/6s), displaying two forms of SB (route-tracing; bar-mouthing), we investigated how housing (conventional laboratory conditions vs. well-resourced 'enriched' cages) affects long-term neuronal activity as assessed via cytochrome oxidase histochemistry in 13 regions of interest (across cortex, striatum, basal ganglia and thalamus). Conventional housing reduced activity in the cortex and striatum. However, DBA mice had no cortical or striatal differences from C57 mice (just greater basal ganglia output activity, independent of housing). Neural correlates for individual levels of bar-mouthing (positive correlations in the substantia nigra and thalamus) were also independent of housing; while route-tracing levels had no clear neural correlates at all. Thus conventional laboratory housing can suppress cortico-striatal activity, but such changes are unrelated to SB (since not mirrored by congruent individual and strain differences). Furthermore, the neural correlates of SB at individual and strain levels seem to reflect underlying predispositions, not housing-mediated changes. To aid further work, hypothesis-generating model fit analyses highlighted this unexplained housing effect, and also suggested several regions of interest across cortex, striatum, thalamus and substantia nigra for future investigation (ideally with improved power to reduce risks of Type II error).
Collapse
Affiliation(s)
- Lindsey Kitchenham
- Campbell Centre for the Study of Animal Welfare/Dept. of Integrative Biology, University of Guelph, Ontario, Canada
| | - Aileen MacLellan
- Campbell Centre for the Study of Animal Welfare/Dept. of Integrative Biology, University of Guelph, Ontario, Canada; Canadian Council on Animal Care; Ottawa Hospital Research Institute; University of Ottawa, Dept. of Anesthesiology and Pain Medicine
| | - Pietro Paletta
- Dept. of Psychology, Neuroscience and Applied Cognitive Sciences, University of Guelph, Ontario, Canada
| | - Ashutosh Patel
- Dept. of Biomedical Sciences, University of Guelph, Ontario, Canada
| | - Elena Choleris
- Dept. of Psychology, Neuroscience and Applied Cognitive Sciences, University of Guelph, Ontario, Canada
| | - Georgia Mason
- Campbell Centre for the Study of Animal Welfare/Dept. of Integrative Biology, University of Guelph, Ontario, Canada.
| |
Collapse
|
5
|
Wongsaengchan C, McCafferty DJ, Lennox K, Nager RG, McKeegan DEF. Non-invasive assessment of positive affective state using infra-red thermography in rats. Anim Welf 2023; 32:e66. [PMID: 38510988 PMCID: PMC10951672 DOI: 10.1017/awf.2023.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 03/22/2024]
Abstract
With recent increased focus on positive welfare in animal welfare science, there is demand for objective positive welfare indicators. It is unclear whether changes in body surface temperature can be used to non-invasively identify and quantify positive states in mammals. We recorded continuous measurements of tail surface temperature using infra-red thermography (IRT) and concurrent behavioural observations in male and female Wistar rats (Rattus norvegicus). If tail surface temperature can differentiate between positive and negative experiences, we expect a qualitatively different response compared to negative experiences. Three groups of rats were presented with increasing magnitudes of food rewards (neutral/none, one and three rewards). The rats were placed in an arena to which they were habituated and filmed for 30 s before and 30 min after exposure to different rewards. Tail temperature initially decreased from the pre-reward baseline and subsequently returned towards baseline temperature. The overall pattern of the change was the same as for rats subjected to negative stimuli in previous studies. Nevertheless, dynamic changes in tail temperature, specifically the rate of recovery and the behavioural response (exploration), differed between neutral and rewarded rats but failed to distinguish reward magnitude. Sex differences were found in both thermal and behavioural responses, unrelated to reward magnitudes. Female rats exhibited a greater initial response with a slower recovery than male rats, emphasising the value of using of both sexes in animal welfare research. This study improves our understanding of the effects of positive emotions induced by food reward on peripheral body temperature and behaviour.
Collapse
Affiliation(s)
- Chanakarn Wongsaengchan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, KY16 9JP, UK
| | - Dominic J McCafferty
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Katie Lennox
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Ruedi G Nager
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Dorothy EF McKeegan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| |
Collapse
|
6
|
Bohn L, Bierbaum L, Kästner N, von Kortzfleisch VT, Kaiser S, Sachser N, Richter SH. Structural enrichment for laboratory mice: exploring the effects of novelty and complexity. Front Vet Sci 2023; 10:1207332. [PMID: 37841462 PMCID: PMC10570735 DOI: 10.3389/fvets.2023.1207332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Providing structural enrichment is a widespread refinement method for laboratory rodents and other animals in captivity. So far, animal welfare research has mostly focused on the effect of increased complexity either by accumulating or combining different enrichment items. However, increasing complexity is not the only possibility to refine housing conditions. Another refinement option is to increase novelty by regularly exchanging known enrichment items with new ones. In the present study, we used pair-housed non-breeding female C57BL/6J and DBA/2N mice to investigate the effect of novelty when applying structural enrichment. We used a double cage system, in which one cage served as home cage and the other as extra cage. While the home cage was furnished in the same way for all mice, in the extra cage we either provided only space with no additional enrichment items (space), a fixed set of enrichment items (complexity), or a changing set of enrichment items (novelty). Over 5 weeks, we assessed spontaneous behaviors, body weight, and extra cage usage as indicators of welfare and preference. Our main results showed that mice with access to structurally enriched extra cages (complexity and novelty) spent more time in their extra cages and complexity mice had lower latencies to enter their extra cages than mice with access to the extra cages without any structural enrichment (space). This indicates that the mice preferred the structurally enriched extra cages over the structurally non-enriched space cages. We found only one statistically significant difference between the novelty and complexity condition: during week 3, novelty mice spent more time in their extra cages than complexity mice. Although we did not detect any other significant differences between the novelty and complexity condition in the present study, more research is required to further explore the potential benefits of novelty beyond complexity.
Collapse
Affiliation(s)
- Lena Bohn
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Louisa Bierbaum
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Niklas Kästner
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | | | - Sylvia Kaiser
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - S. Helene Richter
- Department of Behavioural Biology, Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Decker S, Lavery JM, Mason GJ. Don't use it? Don't lose it! Why active use is not required for stimuli, resources or "enrichments" to have welfare value. Zoo Biol 2023; 42:467-475. [PMID: 36779682 DOI: 10.1002/zoo.21756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/14/2023]
Abstract
Current frameworks for designing and evaluating good enclosures and "enrichments" typically focus on animals' active interactions with these features. This has undoubtedly improved the welfare of zoo-housed animals over the last 30 years or more. However, literature reviews from this same period identify persistent gaps in how such frameworks are applied: experiences and behaviors that do not rely on active interaction with stimuli or resources are largely ignored, when evaluating the welfare value of enclosures and enrichments within them. Here, we review research evidence demonstrating that active interaction is not always a reliable measure of welfare value, showing that items that elicit little or no interaction can nevertheless still reduce stress and improve well-being. This evidence largely comes from research on humans, lab animals and farm animals, but also from some zoo studies too. We then investigate why. We review psychology and ethology literatures to show that such welfare benefits can arise from five, non-mutually exclusive, processes or mechanisms that are well-understood in humans and domestic animals: (1) some motivations are sated quickly by interaction with resources, yet still have large welfare benefits; (2) active interaction may just be a way to achieve a goal or solve a problem, without being beneficial for welfare in itself; (3) having opportunities for choice and control may be inherently beneficial, even when not acted on; (4) some enclosure features meet social needs for structure, landmarks, and blocked sightlines; and (5) some stimuli may be preferred because they signaled good environments to an animal's ancestors. We use this information to identify improved ways of enhancing and assessing zoo animal welfare. Incorporating these concepts should expand the scope of behaviors and subjective experiences that are targeted, to now include those that involve little active interaction and yet still are important for good welfare.
Collapse
Affiliation(s)
- Samuel Decker
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - J Michelle Lavery
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Georgia J Mason
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| |
Collapse
|
8
|
MacLellan A, Nazal B, Young L, Mason G. Waking inactivity as a welfare indicator in laboratory mice: investigating postures, facial expressions and depression-like states. ROYAL SOCIETY OPEN SCIENCE 2022. [PMID: 36340516 DOI: 10.6084/m9.figshare.c.6251130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Animal welfare assessment relies on valid and practical indicators of affect. In mice, the most widely used research vertebrates, lying still with eyes open, inactive-but-awake (IBA) in the home cage, has potential to be one such indicator. IBA is elevated in barren, conventional housing compared with well-resourced, enriched housing, and predicts immobility in Forced Swim Tests, a common measure of 'helplessness' in depression research. In Experiment 1, using females from three strains (C57BL/6, Balb/c and DBA/2), we first replicated past findings, confirming higher levels of IBA in conventional cages and a positive relationship between IBA and helplessness. We then extended this research to three other signs of depression: changes in weight and sleep, and reduced hippocampal volume. Here, IBA positively covaried with body mass index, with sleep in DBA/2s and conventionally housed BALB/cs, and negatively covaried with hippocampal volume in conventionally housed C57BL/6s. In Experiment 2, we sought to refine the phenotype of IBA to improve its accuracy as a welfare indicator. Here, scoring IBA performed in hunched postures appeared to improve its accuracy as an indicator in Balb/c mice. Additional research is now needed to further refine the phenotype of IBA and to confirm whether it reflects states consistent with depression, or instead other underlying poor welfare conditions.
Collapse
Affiliation(s)
- Aileen MacLellan
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Basma Nazal
- Formerly Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Lauren Young
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Georgia Mason
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
9
|
MacLellan A, Nazal B, Young L, Mason G. Waking inactivity as a welfare indicator in laboratory mice: investigating postures, facial expressions and depression-like states. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221083. [PMID: 36340516 PMCID: PMC9627452 DOI: 10.1098/rsos.221083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 05/09/2023]
Abstract
Animal welfare assessment relies on valid and practical indicators of affect. In mice, the most widely used research vertebrates, lying still with eyes open, inactive-but-awake (IBA) in the home cage, has potential to be one such indicator. IBA is elevated in barren, conventional housing compared with well-resourced, enriched housing, and predicts immobility in Forced Swim Tests, a common measure of 'helplessness' in depression research. In Experiment 1, using females from three strains (C57BL/6, Balb/c and DBA/2), we first replicated past findings, confirming higher levels of IBA in conventional cages and a positive relationship between IBA and helplessness. We then extended this research to three other signs of depression: changes in weight and sleep, and reduced hippocampal volume. Here, IBA positively covaried with body mass index, with sleep in DBA/2s and conventionally housed BALB/cs, and negatively covaried with hippocampal volume in conventionally housed C57BL/6s. In Experiment 2, we sought to refine the phenotype of IBA to improve its accuracy as a welfare indicator. Here, scoring IBA performed in hunched postures appeared to improve its accuracy as an indicator in Balb/c mice. Additional research is now needed to further refine the phenotype of IBA and to confirm whether it reflects states consistent with depression, or instead other underlying poor welfare conditions.
Collapse
Affiliation(s)
- Aileen MacLellan
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Basma Nazal
- Formerly Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Lauren Young
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - Georgia Mason
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
10
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
11
|
Correa AJS, Barros EM, Lopez VM, Guillermo-Ferreira R. Is item hiding a good enrichment strategy to reduce stereotypic behaviors and increase social interactions in captive female spectacled bears? J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
|
13
|
Denommé MR, Mason GJ. Social Buffering as a Tool for Improving Rodent Welfare. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:5-14. [PMID: 34915978 PMCID: PMC8786379 DOI: 10.30802/aalas-jaalas-21-000006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
The presence of a conspecific can be calming to some species of animal during stress, a phenomenon known as social buffering. For rodents, social buffering can reduce the perception of and reaction to aversive experiences. With a companion, animals may be less frightened in conditioned fear paradigms, experience faster wound healing, show reduced corticosterone responses to novelty, and become more resilient to everyday stressors like cage-cleaning. Social buffering works in diverse ways across species and life stages. For example, social buffering may rely on specific bonds and interactions between individuals, whereas in other cases, the mere presence of conspecific cues may reduce isolation stress. Social buffering has diverse practical applications for enhancing rodent wellbeing (some of which can be immediately applied, while others need further development via welfare-oriented research). Appropriate social housing will generally increase rodents' abilities to cope with challenges, with affiliative cage mates being the most effective buffers. Thus, when rodents are scheduled to experience distressing research procedures, ensuring that their home lives supply high degrees of affiliative, low stress social contact can be an effective refinement. Furthermore, social buffering research illustrates the stress of acute isolation: stressors experienced outside the cage may thus be less impactful if a companion is present. If a companion cannot be provided for subjects exposed to out-of-cage stressors, odors from unstressed animals can help ameliorate stress, as can proxies such as pieces of synthetic fur. Finally, in cases involving conditioned fear (the learned expectation of harm), newly providing social contact during exposure to negative conditioned stimuli (CS) can modify the CS such that for research rodents repeatedly exposed to aversive stimuli, adding conspecific contact can reduce their conditioned fear. Ultimately, these benefits of social buffering should inspire the use of creative techniques to reduce the impact of stressful procedures on laboratory rodents, so enhancing their welfare.
Collapse
Affiliation(s)
- Melanie R Denommé
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Georgia J Mason
- Department of Integrative Biology, University of Guelph, Ontario, Canada
- Corresponding author. Email address:
| |
Collapse
|
14
|
Hobbiesiefken U, Mieske P, Lewejohann L, Diederich K. Evaluation of different types of enrichment - their usage and effect on home cage behavior in female mice. PLoS One 2021; 16:e0261876. [PMID: 34941949 PMCID: PMC8699725 DOI: 10.1371/journal.pone.0261876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
Numerous studies ascertained positive effects of enriched environments on the well-being of laboratory animals including behavioral, physiological and neurochemical parameters. Conversely, such conclusions imply impaired animal welfare and health in barren husbandry conditions. Moreover, inappropriate housing of laboratory animals may deteriorate the quality of scientific data. Recommendations for housing laboratory animals stipulate that cages should be enriched to mitigate adverse effects of barren housing. In this context, it is not only unclear what exactly is meant by enrichment, but also how the animals themselves interact with the various items on offer. Focal animal observation of female C57BL/6J mice either housed in conventional (CON) or enriched (ENR) conditions served to analyze the impact of enriching housing on welfare related behavior patterns including stereotypical, maintenance, active social, and inactive behaviors. CON conditions resembled current usual housing of laboratory mice, whereas ENR mice received varying enrichment items including foraging, housing and structural elements, and a running disc. Active and inactive use of these elements was quantitatively assessed. CON mice showed significantly more inactive and stereotypical behavior than ENR mice. ENR mice frequently engaged with all enrichment elements, whereby riddles to obtain food reward and the running disc preferably served for active interactions. Offering a second level resulted in high active and inactive interactions. Structural elements fixed at the cagetop were least attractive for the mice. Overall, the presented data underline the positive welfare benefits of enrichment and that mice clearly differentiate between distinct enrichment types, demonstrating that the perspective of the animals themselves should also be taken into account when specifying laboratory housing conditions. This is particularly important, as the ensuring of animal welfare is an essential prerequisite for reliable, reproducible, and scientifically meaningful results.
Collapse
Affiliation(s)
- Ute Hobbiesiefken
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Paul Mieske
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| |
Collapse
|
15
|
Fureix C, Trevarthen AC, Finnegan EM, Bučková K, Paul ES, Mendl MT. Do greater levels of in-cage waking inactivity in laboratory mice reflect a spontaneous depression-like symptom? A pharmacological investigation. Pharmacol Biochem Behav 2021; 212:173311. [PMID: 34863797 DOI: 10.1016/j.pbb.2021.173311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
We previously identified in laboratory mice an inactive state [being awake with eyes open motionless within the home cage; inactive but awake, 'IBA'] sharing etiological factors and symptoms with human clinical depression. We further test the hypothesis that greater time spent displaying IBA indicates a depression-like state in mice by investigating whether the antidepressant Venlafaxine, environmental enrichment, and their combination, alleviate IBA. Seventy-two C57BL/6J and 72 DBA/2J female mice were pseudo-randomly housed post-weaning in mixed strain-pairs in non-enriched (NE; 48 pairs) or in environmentally enriched (EE; 24 pairs) cages. After 34 days, half of the mice housed in NE cages were either relocated to EE cages or left in NE cages. For each of these conditions, half of the mice drank either a placebo or the antidepressant Venlafaxine (10 mg/kg). The 48 mice housed in EE cages were all relocated to NE cages and allocated to either the placebo (n = 24) or Venlafaxine (n = 24). IBA data were collected prior to and after environmental adjustment by trained observers blind to the pharmacological and environmental adjustment treatments. Data were analyzed using GLM models. NE cages triggered more IBA than EE cages (Likelihood-Ratio-Test Chi23 = 53.501, p < 0.0001). Venlafaxine and environmental enrichment appeared equally effective at reducing IBA (LRT Chi23 = 18.262, p < 0.001), and combining these approaches did not magnify their effects. Enrichment removal triggered IBA increase (LRT Chi21 = 23.050, p < 0.001), but Venlafaxine did not overcome the increase in IBA resulting from enrichment loss (LTR Chi21 = 0.081, p = 0.775). Theoretical implications for putative depression-like states in mice, and further research directions, are discussed.
Collapse
Affiliation(s)
- Carole Fureix
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Anna C Trevarthen
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Emily M Finnegan
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Katarína Bučková
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom
| | - Elizabeth S Paul
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| | - Michael T Mendl
- University of Bristol, Bristol Veterinary School, Langford House, Langford BS40 5DU, United Kingdom.
| |
Collapse
|
16
|
MacLellan A, Fureix C, Polanco A, Mason G. Can animals develop depression? An overview and assessment of ‘depression-like’ states. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Describing certain animal behaviours as ‘depression-like’ or ‘depressive’ has become common across several fields of research. These typically involve unusually low activity or unresponsiveness and/or reduced interest in pleasure (anhedonia). While the term ‘depression-like’ carefully avoids directly claiming that animals are depressed, this narrative review asks whether stronger conclusions can be legitimate, with animals developing the clinical disorder as seen in humans (cf., DSM-V/ICD-10). Here, we examine evidence from animal models of depression (especially chronically stressed rats) and animals experiencing poor welfare in conventional captive conditions (e.g., laboratory mice and production pigs in barren environments). We find troubling evidence that animals are indeed capable of experiencing clinical depression, but demonstrate that a true diagnosis has yet to be confirmed in any case. We thus highlight the importance of investigating the co-occurrence of depressive criteria and discuss the potential welfare and ethical implications of animal depression.
Collapse
Affiliation(s)
- Aileen MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Carole Fureix
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Andrea Polanco
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Georgia Mason
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
17
|
Ratuski AS, Makowska IJ, Dvorack KR, Weary DM. Using approach latency and anticipatory behaviour to assess whether voluntary playpen access is rewarding to laboratory mice. Sci Rep 2021; 11:18683. [PMID: 34548608 PMCID: PMC8455539 DOI: 10.1038/s41598-021-98356-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023] Open
Abstract
Laboratory mice are typically housed in “shoebox" cages that limit the expression of natural behaviours. Temporary access to more complex environments (playpens) may improve their welfare. We aimed to assess if access to playpens is rewarding for conventionally-housed mice and to document mouse behaviour during playpen access. Female C57BL/6J, BALB/cJ, and DBA/2J mice were provided temporary access to a large enriched playpen three times per week; control mice remained in their home cages. We measured latency to enter playpens and anticipatory behaviour to determine if access was rewarding, and recorded mouse behaviour during playpen sessions. Over time, playpen mice entered the playpen more quickly; latency declined from 168 ± 22 to 13 ± 2 s over the 14-d trial. As expected, playpen mice showed an increase in anticipatory behaviour before playpen access (mean ± SE = 19.7 ± 2.6 behavioural transitions), while control mice showed no change in anticipatory behaviour relative to baseline values (2.4 ± 1.6 transitions). Mice in the playpen performed more ambulatory behaviours than control mice who remained in home cages (21.5 ± 0.7 vs 6.9 ± 1.1 observations of 25 total observations). We conclude that conventionally-housed mice find voluntary playpen access rewarding, and suggest this as a useful option for providing laboratory mice with access to more complex environments.
Collapse
Affiliation(s)
- Anna S Ratuski
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada.
| | - I Joanna Makowska
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada
| | - Kaitlyn R Dvorack
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada
| | - Daniel M Weary
- Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T 1Z6, Canada
| |
Collapse
|
18
|
Resasco A, MacLellan A, Ayala MA, Kitchenham L, Edwards AM, Lam S, Dejardin S, Mason G. Cancer blues? A promising judgment bias task indicates pessimism in nude mice with tumors. Physiol Behav 2021; 238:113465. [PMID: 34029586 DOI: 10.1016/j.physbeh.2021.113465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
In humans, affective states can bias responses to ambiguous information: a phenomenon termed judgment bias (JB). Judgment biases have great potential for assessing affective states in animals, in both animal welfare and biomedical research. New animal JB tasks require construct validation, but for laboratory mice (Mus musculus), the most common research vertebrate, a valid JB task has proved elusive. Here (Experiment 1), we demonstrate construct validity for a novel mouse JB test: an olfactory Go/Go task in which subjects dig for high- or low-value food rewards. In C57BL/6 and Balb/c mice faced with ambiguous cues, latencies to dig were sensitive to high/low welfare housing: environmentally-enriched animals responded with relative 'optimism' through shorter latencies. Illustrating the versatility of this validated JB task across different fields of research, it further allowed us to test hypotheses about the mood-altering effects of cancer in male and female nude mice (Experiment 2). Males, although not females, treated ambiguous cues as intermediate; and males bearing subcutaneous lung adenocarcinomas also responded more pessimistically to these than did healthy controls. To our knowledge, this is the first evidence of a valid mouse JB task, and the first demonstration of pessimism in tumor-bearing animals. This task still needs to be refined to improve its sensitivity. However, it has great potential for investigating mouse welfare, the links between affective state and disease, depression-like states in animals, and hypotheses regarding the neurobiological mechanisms that underlie affect-mediated biases in judgment.
Collapse
Affiliation(s)
- A Resasco
- Institute of Cell Biology and Neurosciences, National Scientific and Technical Research Council-University of Buenos Aires, Autonomous City of Buenos Aires, Argentina; Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - A MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M A Ayala
- Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - L Kitchenham
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - A M Edwards
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - S Lam
- Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - S Dejardin
- Formerly Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - G Mason
- Department of Integrative Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
19
|
Kitchenham L, Mason GJ. The neurobiology of environmentally induced stereotypic behaviours in captive animals: assessing the basal ganglia pathways and cortico-striatal-thalamo-cortical circuitry hypotheses. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The neurobiology of environmentally induced stereotypic behaviours (SBs) (e.g., pacing in zoo carnivores, crib-biting in horses, tail chasing in dogs) is hypothesized to involve altered functioning within the basal ganglia (‘Basal Ganglia (BG) Pathways Hypotheses’) and/or between the basal ganglia and cortex (‘Cortico-Striatal-Thalamo-Cortical (CSTC) Circuits Hypotheses’). We review four decades of relevant studies, critically assessing support for both hypotheses. Currently no BG Pathways or CSTC Circuits hypothesis is fully supported. While some results are partially consistent with some hypotheses (decreased subthalamic nucleus activity in deer mice and C58 mice); others (nucleus accumbens activity in mink and C57 mice) seem to reflect individual differences in SB, but not environmental effects. Yet others can be tentatively rejected: neither elevated striatal dopamine nor the cortico-striatal connection of the sensorimotor circuit seem to be involved for most species studied to date. Further research is now important for understanding the impact of captivity on animals’ functioning.
Collapse
Affiliation(s)
- Lindsey Kitchenham
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Georgia J. Mason
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Adcock A, Choleris E, Denommé M, Khan H, Levison L, MacLellan A, Nazal B, Niel L, Nip E, Mason G. Where are you from? Female mice raised in enriched or conventional cages differ socially, and can be discriminated by other mice. Behav Brain Res 2020; 400:113025. [PMID: 33249072 DOI: 10.1016/j.bbr.2020.113025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/02/2023]
Abstract
Laboratory rodents raised in environmentally-enriched (EE) cages differ behaviourally and cognitively from conventionally-housed (CH) animals. We hypothesised that mice can detect such differences, testing this using differentially-raised female C57BL/6 s as subjects, and differentially-raised female BALB/cs and DBA/2 s as stimuli, in Social Approach Tests. Because more prone to signs of depression, anxiety, stereotypic behaviour (SB) and aggression, we further hypothesised that CH mice would be less sociable and socially attractive than EE mice. A novel familiarisation paradigm pre-exposed subjects to non-cagemate EE and CH stimulus mice before testing in Social Approach Tests. CH subjects proved less sociable than EE subjects: an effect unrelated to general exploration, anxiety or depression-like traits, and driven specifically by reduced interest in CH stimulus mice. Providing further evidence that CH and EE stimulus mice could be distinguished, subjects proved most attracted to mice from housing unlike their own. CH subjects thus preferred EE over CH stimulus mice, while EE subjects tended to prefer CH over EE: patterns that were not mediated by any measured aspect of stimulus mouse behaviour. Differential bodyweight also seemed unimportant, as was scent: soiled CH and EE bedding/nesting did not elicit the same discrimination. Instead, subjects who avoided CH stimulus mice and were attracted to EE stimulus mice were those who received the most agonism in their home cages. Together this provides the first demonstration that mice can distinguish between individuals raised in enriched or conventional cages, and suggests that receiving agonism from cagemates may motivate mice to seek new, less aggressive companions.
Collapse
Affiliation(s)
- Aimée Adcock
- Formerly Dept. of Animal Biosciences, University of Guelph, Ontario, Canada
| | - Elena Choleris
- Dept. of Psychology, University of Guelph, Ontario, Canada
| | - Melanie Denommé
- Formerly Dept. of Animal Biosciences, University of Guelph, Ontario, Canada
| | - Haider Khan
- Formerly Dept. of Molecular and Cell Biology, University of Guelph, Ontario, Canada
| | - Lena Levison
- Animal Care Services, University of Guelph, Ontario, Canada
| | - Aileen MacLellan
- Dept. of Integrative Biology, University of Guelph, Ontario, Canada
| | - Basma Nazal
- Formerly Dept. of Animal Biosciences, University of Guelph, Ontario, Canada
| | - Lee Niel
- Dept. of Population Medicine, University of Guelph, Ontario, Canada
| | - Emma Nip
- Formerly Dept. of Animal Biosciences, University of Guelph, Ontario, Canada
| | - Georgia Mason
- Dept. of Integrative Biology, University of Guelph, Ontario, Canada.
| |
Collapse
|
21
|
Bodden C, Wewer M, Kästner N, Palme R, Kaiser S, Sachser N, Richter SH. Not all mice are alike: Mixed-strain housing alters social behaviour. Physiol Behav 2020; 228:113220. [PMID: 33122091 DOI: 10.1016/j.physbeh.2020.113220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/13/2023]
Abstract
The use of millions of mice in scientific studies worldwide emphasises the continuing need for a reduction of sample sizes, however, not at the expense of scientific validity. Split-plot designs have been suggested to enhance statistical power while allowing a reduction of animal numbers in comparison to traditional experimental designs. Recently, a promising approach of a split-plot design has been implemented and proven useful using mixed-strain housing of at least three different mouse strains. However, the impact of co-housing different strains of mice in one cage on animal welfare has still to be defined. This study aimed at comparing the effects of mixed-strain and same-strain housing of female C57BL/6J and DBA/2N mice on welfare and behaviour in two experimental phases. In a first phase, mice were housed in either mixed- or same-strain pairs. Home cage behaviour, activity rhythm, body weight, and faecal corticosterone metabolites were assessed. Furthermore, tests for anxiety-like and exploratory behaviour as well as spatial learning were performed. In a second phase, sociability was investigated in newly formed mixed-strain quartets. Mixed-strain housing did not induce alterations in anxiety, locomotion, learning, stereotypic behaviour, and stress hormone levels. However, changes in social behaviours and activity rhythm were observed. Increased agonistic and decreased socio-positive behaviours might point towards mild impacts on welfare in C57BL/6J mice under co-housing conditions. Altogether, scientific research may greatly benefit from co-housing mice of different strains within the same cages (e.g. for the realisation of a split-plot design), provided that strains are carefully selected for compatibility.
Collapse
Affiliation(s)
- Carina Bodden
- Department of Behavioural Biology, University of Münster, Münster, Germany; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Maximilian Wewer
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Niklas Kästner
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| |
Collapse
|
22
|
Pritchett-Corning KR. Environmental Complexity and Research Outcomes. ILAR J 2020; 60:239-251. [PMID: 32559304 DOI: 10.1093/ilar/ilaa007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 11/14/2022] Open
Abstract
Environmental complexity is an experimental paradigm as well as a potential part of animals' everyday housing experiences. In experimental uses, researchers add complexity to stimulate brain development, delay degenerative brain changes, elicit more naturalistic behaviors, and test learning and memory. Complexity can exacerbate or mitigate behavioral problems, give animals a sense of control, and allow for expression of highly driven, species-typical behaviors that can improve animal welfare. Complex environments should be designed thoughtfully with the animal's natural behaviors in mind, reported faithfully in the literature, and evaluated carefully for unexpected effects.
Collapse
Affiliation(s)
- Kathleen R Pritchett-Corning
- Office of Animal Resources, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|