1
|
Østergaard M, Naver EB, Kaestner A, Willendrup PK, Brüel A, Sørensen HO, Thomsen JS, Schmidt S, Poulsen HF, Theil Kuhn L, Birkedal H. Polychromatic neutron phase-contrast imaging of weakly absorbing samples enabled by phase retrieval. J Appl Crystallogr 2023; 56:673-682. [PMID: 37284268 PMCID: PMC10241042 DOI: 10.1107/s1600576723003011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/01/2023] [Indexed: 06/08/2023] Open
Abstract
The use of a phase-retrieval technique for propagation-based phase-contrast neutron imaging with a polychromatic beam is demonstrated. This enables imaging of samples with low absorption contrast and/or improving the signal-to-noise ratio to facilitate e.g. time-resolved measurements. A metal sample, designed to be close to a phase pure object, and a bone sample with canals partially filled with D2O were used for demonstrating the technique. These samples were imaged with a polychromatic neutron beam followed by phase retrieval. For both samples the signal-to-noise ratios were significantly improved and, in the case of the bone sample, the phase retrieval allowed for separation of bone and D2O, which is important for example for in situ flow experiments. The use of deuteration contrast avoids the use of chemical contrast enhancement and makes neutron imaging an interesting complementary method to X-ray imaging of bone.
Collapse
Affiliation(s)
- Maja Østergaard
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, Aarhus, Denmark
| | - Estrid Buhl Naver
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, Kongens Lyngby, Denmark
| | - Anders Kaestner
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, Villigen, Switzerland
| | - Peter K. Willendrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, Kongens Lyngby, Denmark
- European Spallation Source ERIC, PO Box 176, Lund, Sweden
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 3, Aarhus, Denmark
| | - Henning Osholm Sørensen
- Department of Physics, Technical University of Denmark, Fysikvej 307, Kongens Lyngby, Denmark
- Xnovo Technology ApS, Galoche Alle 15, 1, Køge, Denmark
| | | | - Søren Schmidt
- European Spallation Source ERIC, PO Box 176, Lund, Sweden
| | - Henning Friis Poulsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, Kongens Lyngby, Denmark
| | - Luise Theil Kuhn
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, Kongens Lyngby, Denmark
| | - Henrik Birkedal
- Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, Aarhus, Denmark
| |
Collapse
|
2
|
Gamage KAA, Joyce MJ, Taylor GC. A digital approach to neutron-γ imaging with a narrow tungsten collimator aperture and a fast organic liquid scintillator detector. Appl Radiat Isot 2012; 70:1223-7. [PMID: 22321491 DOI: 10.1016/j.apradiso.2012.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/21/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
A digital neutron-γ imaging technique for mixed radiation field is described. The imaging system is based upon an organic liquid scintillator detector, a narrow tungsten collimator, fast digitiser and adjustable equatorial mount. Radioactive sources have been attached to a vertical plane and the digitiser has been used to digitise neutron and γ events. The digitised events have been discriminated using pulse gradient analysis and images have been generated of the count distribution in the source plane.
Collapse
Affiliation(s)
- K A A Gamage
- Engineering Department, Lancaster University, Lancaster LA1 4YR, UK.
| | | | | |
Collapse
|