1
|
Hussain M, Mues Genannt Koers L, Spahn I, Spellerberg S, Neumaier B, Qaim SM. Excitation functions of 72Ge(p,xn) 72,71As reactions from threshold up to 45 MeV for production of the non-standard positron emitter 72As. Sci Rep 2024; 14:16724. [PMID: 39030288 PMCID: PMC11271559 DOI: 10.1038/s41598-024-67319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
Nuclear reaction cross sections for the formation of 72As and 71As in proton-induced reactions on enriched 72Ge targets were measured up to 45 MeV utilizing three different cyclotrons at the Forschungszentrum Jülich. The stacked-thin sample activation technique in combination with high-resolution γ-ray spectrometry was used. The major γ-ray peaks of 72As and 71As formed via the 72Ge(p,n)72As and 72Ge(p,2n)71As reactions, respectively, were analyzed. The incident proton energy and flux on a foil were determined using several monitor reactions. Based on integrated counts, irradiation data and the nuclear decay data, the reaction cross sections were measured. All data describe the first measurements. Theoretical nuclear model calculations were then carried out by using the codes TALYS 1.96, EMPIRE 3.2 and ALICE-IPPE. A very good agreement between the measured data and calculated values was found. The new data enabled us to calculate the thick target yields and estimate the radionuclidic impurities for a given energy range. Over the optimum energy range Ep = 14 → 7 MeV, the calculated thick target yield of 72As amounts to 272 MBq/μAh with no 71As impurity at all. The 72Ge(p,n)72As reaction on the enriched 72Ge is thus very suitable for clinical scale production of 72As at a medical cyclotron.
Collapse
Affiliation(s)
- Mazhar Hussain
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany.
- Department of Physics, Government College University Lahore (GCUL), Lahore, 54000, Pakistan.
| | - Lucas Mues Genannt Koers
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
| | - Ingo Spahn
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany.
| | - Stefan Spellerberg
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
| | - Bernd Neumaier
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
- Institute of Radiochemistry and Experimental Molecular Imaging, University of Cologne, Cologne, 50937, Germany
| | - Syed M Qaim
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich (FZJ), 52425, Jülich, Germany
| |
Collapse
|
2
|
Salas-Tapia LF, Zhang T. On Cyclotron-Based Production of Gallium-68 Isotope: A Computational Benchmark for the Production Yield & Shielding Considerations. JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE 2023. [DOI: 10.1115/1.4055257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Gallium-68 (68Ga) has played a relevant role for the novel studies in the nuclear medicine area. Its production has been made traditionally and initially using 68Ge/68Ga generators. These devices represent some flaws, namely, high costs, low activity per elution, and long-time waiting between elutions. In order to address these concerns, the cyclotron-based production of 68Ga has been recently investigated and has shown promising outcomes regarding the activity at the end of bombardment for both solid and liquid targets. Currently, the use of computational codes and theoretical calculations takes relevance when it comes to calculating relevant nuclear physics quantities such as the production yield and the ambient dose rate. These outcomes are important for having a proper understanding of all the reactions involved during an irradiation routine with protons on a target. In this work, we used important cad-based programs, Monte Carlo codes, and a deterministic calculator with the objective of making a full benchmark with a previous experimental research. We also calculated the shielding requirements for this kind of isotope production facility. The proposed shielding materials and their respective thickness showed to be sufficient to avoid high ambient dose rates outside the machine. For the production yield, we found out that a hybrid combination of Monte Carlo codes and subsequently a computation with a deterministic calculator gave us more precise results for the irradiation conditions considered here.
Collapse
Affiliation(s)
| | - Tian Zhang
- College of Nuclear Science and Technology, Harbin Engineering University , Harbin 150001, China
| |
Collapse
|
3
|
George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021; 11:31098-31123. [PMID: 35498914 PMCID: PMC9041346 DOI: 10.1039/d1ra04480j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging with medical radioisotopes enables the minimally-invasive monitoring of aberrant biochemical, cellular and tissue-level processes in living subjects. The approach requires the administration of radiotracers composed of radioisotopes attached to bioactive molecules, the pairing of which considers several aspects of the radioisotope in addition to the biological behavior of the targeting molecule to which it is attached. With the advent of modern cellular and biochemical techniques, there has been a virtual explosion in potential disease recognition antigens as well as targeting moieties, which has subsequently opened new applications for a host of emerging radioisotopes with well-matched properties. Additionally, the global radioisotope production landscape has changed rapidly, with reactor-based production and its long-defined, large-scale centralized manufacturing and distribution paradigm shifting to include the manufacture and distribution of many radioisotopes via a worldwide fleet of cyclotrons now in operation. Cyclotron-based radioisotope production has become more prevalent given the commercial availability of instruments, coupled with the introduction of new target hardware, process automation and target manufacturing methods. These advances enable sustained, higher-power irradiation of solid targets that allow hospital-based radiopharmacies to produce a suite of radioisotopes that drive research, clinical trials, and ultimately clinical care. Over the years, several different radioisotopes have been investigated and/or selected for radiolabeling due to favorable decay characteristics (i.e. a suitable half-life, high probability of positron decay, etc.), well-elucidated chemistry, and a feasible production framework. However, longer-lived radioisotopes have surged in popularity given recent regulatory approvals and incorporation of radiopharmaceuticals into patient management within the medical community. This review focuses on the applications, nuclear properties, and production and purification methods for some of the most frequently used/emerging positron-emitting, solid-target-produced radioisotopes that can be manufactured using small-to-medium size cyclotrons (≤24 MeV).
Collapse
Affiliation(s)
- K J H George
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - S Borjian
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - M C Cross
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - J W Hicks
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - P Schaffer
- Life Sciences, TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 Canada
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
- Radiology, University of British Columbia 2775 Laurel St Vancouver BC V5Z 1M9 Canada
- Chemistry, Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - M S Kovacs
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
- Medical Imaging, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| |
Collapse
|
4
|
Naskar N, Lahiri S. Separation of no-carrier-added 71,72As from 46 MeV alpha particle irradiated gallium oxide target. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
No-carrier-added (NCA) 71,72As radionuclides were produced by irradiating gallium oxide target by 46 MeV α-particles. NCA 71,72As was separated from the target matrix by liquid-liquid extraction (LLX) using trioctyl amine (TOA) and tricaprylmethylammonium chloride (aliquat-336) diluted in cyclohexane. The bulk gallium was quantitatively extracted into the organic phase leaving 71,72As in the aqueous phase. Complete separation was observed at 3 M HCl + 0.1 M TOA and 2 M HCl + 0.01 M aliquat-336.
Collapse
Affiliation(s)
- Nabanita Naskar
- Saha Institute of Nuclear Physics , 1/AF Bidhannagar , Kolkata , 700064 , India
| | - Susanta Lahiri
- Saha Institute of Nuclear Physics , 1/AF Bidhannagar , Kolkata , 700064 , India
| |
Collapse
|
5
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
6
|
Sanders VA, Cutler CS. Radioarsenic: A promising theragnostic candidate for nuclear medicine. Nucl Med Biol 2021; 92:184-201. [PMID: 32376084 DOI: 10.1016/j.nucmedbio.2020.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Molecular imaging is a non-invasive process that enables the visualization, characterization, and quantitation of biological processes at the molecular and cellular level. With the emergence of theragnostic agents to diagnose and treat disease for personalized medicine there is a growing need for matched pairs of isotopes. Matched pairs offer the unique opportunity to obtain patient specific information from SPECT or PET diagnostic studies to quantitate in vivo function or receptor density to inform and tailor therapeutic treatment. There are several isotopes of arsenic that have emissions suitable for either or both diagnostic imaging and radiotherapy. Their half-lives are long enough to pair them with peptides and antibodies which take longer to reach maximum uptake to facilitate improved patient pharmacokinetics and dosimetry then can be obtained with shorter lived radionuclides. Arsenic-72 even offers availability from a generator that can be shipped to remote sites and thus enhances availability. Arsenic has a long history as a diagnostic agent, but until recently has suffered from limited availability, lack of suitable chelators, and concerns about toxicity have inhibited its use in nuclear medicine. However, new production methods and novel chelators are coming online and the use of radioarsenic in the pico and nanomolar scale is well below the limits associated with toxicity. This manuscript will review the production routes, separation chemistry, radiolabeling techniques and in vitro/in vivo studies of three medically relevant isotopes of arsenic (arsenic-74, arsenic-72, and arsenic-77).
Collapse
Affiliation(s)
- Vanessa A Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
7
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
DeGraffenreid AJ, Medvedev DG, Phelps TE, Gott MD, Smith SV, Jurisson SS, Cutler CS. Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2018-2931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Experiments were performed to evaluate production of 72Se, parent radionuclide of the positron emitter 72As, at high energy at the Brookhaven Linac Isotope Producer (BLIP). Excitation functions for 75As(p, xn)72/75Se in the 52-105 MeV energy range were measured by irradiating thin gallium arsenide (GaAs) wafers. Maximum cross section value for the natAs(p, 4n)72Se reaction in the energy range was 103±9 mb at 52±1 MeV. Production size GaAs and arsenic metal (As°) targets were irradiated with 136 μA and 165 μA beam current possessing an initial Linac energy of 117 MeV. A total of 3.77±0.1 GBq (102±3 mCi) of 72Se was produced from a GaAs target at a calculated target entrance energy of 105.4 MeV, and 13.8±0.3 GBq (373±8 mCi) of 72Se from an As° target at a calculated incident energy of 49.5 MeV irradiated for 116.5 h and 68.9 h, respectively.
Collapse
Affiliation(s)
| | - Dmitri G. Medvedev
- Collider Accelerator Department , Brookhaven National Laboratory , Upton, NY 11973 , USA
| | - Timothy E. Phelps
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| | - Matthew D. Gott
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| | - Suzanne V. Smith
- Collider Accelerator Department , Brookhaven National Laboratory , Upton, NY 11973 , USA
| | - Silvia S. Jurisson
- Department of Chemistry , University of Missouri , Columbia, MO 65211 , USA
| | - Cathy S. Cutler
- Collider Accelerator Department , Brookhaven National Laboratory , Upton, NY 11973 , USA
| |
Collapse
|
9
|
Tárkányi FT, Ignatyuk AV, Hermanne A, Capote R, Carlson BV, Engle JW, Kellett MA, Kibédi T, Kim GN, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Verpelli M. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-018-6380-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
|
11
|
Qaim SM. Nuclear data for production and medical application of radionuclides: Present status and future needs. Nucl Med Biol 2016; 44:31-49. [PMID: 27821344 DOI: 10.1016/j.nucmedbio.2016.08.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The significance of nuclear data in the choice and medical application of a radionuclide is considered: the decay data determine its suitability for organ imaging or internal therapy and the reaction cross section data allow optimisation of its production route. A brief discussion of reaction cross sections and yields is given. STANDARD RADIONUCLIDES The standard SPECT, PET and therapeutic radionuclides are enumerated and their decay and production data are considered. The status of nuclear data is generally good. Some existing discrepancies are outlined. A few promising alternative production routes of 99mTc and 68Ga are discussed. RESEARCH-ORIENTED RADIONUCLIDES The increasing significance of non-standard positron emitters in organ imaging and of low-energy highly-ionizing radiation emitters in internal therapy is discussed, their nuclear data are considered and a brief review of their status is presented. Some other related nuclear data issues are also mentioned. PRODUCTION OF RADIONUCLIDES USING NEWER TECHNOLOGIES The data needs arising from new directions in radionuclide applications (multimode imaging, theranostic approach, radionanoparticles, etc.) are considered. The future needs of data associated with possible utilization of newer irradiation technologies (intermediate energy cyclotron, high-intensity photon accelerator, spallation neutron source, etc.) are outlined. CONCLUSION Except for a few small discrepancies, the available nuclear data are sufficient for routine production and application of radionuclides. Considerable data needs exist for developing novel radionuclides for applications. The developing future technologies for radionuclide production will demand further data-related activities.
Collapse
Affiliation(s)
- Syed M Qaim
- Institut für Neurowissenschaften und Medizin, INM-5 (Nuklearchemie), Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
12
|
Qaim SM, Spahn I, Scholten B, Neumaier B. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. RADIOCHIM ACTA 2016. [DOI: 10.1515/ract-2015-2566] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Alpha particles exhibit three important characteristics: scattering, ionisation and activation. This article briefly discusses those properties and outlines their major applications. Among others, α-particles are used in elemental analysis, investigation and improvement of materials properties, nuclear reaction studies and medical radionuclide production. The latter two topics, dealing with activation of target materials, are treated in some detail in this paper. Measurements of excitation functions of α-particle induced reactions shed some light on their reaction mechanisms, and studies of isomeric cross sections reveal the probability of population of high-spin nuclear levels. Regarding medical radionuclides, an overview is presented of the isotopes commonly produced using α-particle beams. Consideration is also given to some routes which could be potentially useful for production of a few other radionuclides. The significance of α-particle induced reactions to produce a few high-spin isomeric states, decaying by emission of low-energy conversion or Auger electrons, which are of interest in localized internal radiotherapy, is outlined. The α-particle beam, thus broadens the scope of nuclear chemistry research related to development of non-standard positron emitters and therapeutic radionuclides.
Collapse
Affiliation(s)
- Syed M. Qaim
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Ingo Spahn
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Bernhard Scholten
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Bernd Neumaier
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
13
|
Brasse D, Nonat A. Radiometals: towards a new success story in nuclear imaging? Dalton Trans 2015; 44:4845-58. [DOI: 10.1039/c4dt02911a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of radiometal isotopes in positron emission tomography: a new success story in nuclear imaging?
Collapse
Affiliation(s)
- David Brasse
- Université de Strasbourg
- 67037 Strasbourg
- France
- CNRS
- UMR7178
| | - Aline Nonat
- Université de Strasbourg
- 67087 Strasbourg
- France
- CNRS
- UMR7178
| |
Collapse
|
14
|
Abstract
SummaryNuclear reaction cross section data are of great significance in optimisation of production routes of radionuclides. This article deals with some newer aspects of data research related to production of both standard and novel radionuclides. The recent work to standardise the known data is discussed and new measurements with regard to further optimisation of production routes of some commonly used radionuclides are mentioned. Attempts to increase the specific activity of some reactor-produced radionuclides through the use of charged-particle induced reactions are outlined. The jeopardy in the supply of99mTcviaa fission-produced99Mo/99mTc generator is considered and its possible direct production at a cyclotron is briefly discussed. Regarding the novel radionuclides, development work is presently focussed on non-standard positron emitters for diagnosis and on low-range highly ionising radiation emitters for internal radiotherapy. Recent nuclear reaction cross section measurements related to the production of the two types of radionuclides are briefly reviewed and some anticipated trends in nuclear data research are considered.
Collapse
Affiliation(s)
- S. M. Qaim
- Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
15
|
Pre-equilibrium effects on proton, deuteron, and alpha induced reactions for the production of 72As as a PET imaging radioisotope. J Radioanal Nucl Chem 2013. [DOI: 10.1007/s10967-013-2447-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Fassbender M, Taylor W, Vieira D, Nortier M, Bach H, John K. Proton beam simulation with MCNPX/CINDER'90: Germanium metal activation estimates below 30MeV relevant to the bulk production of arsenic radioisotopes. Appl Radiat Isot 2012; 70:72-5. [DOI: 10.1016/j.apradiso.2011.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
|
17
|
Enferadi M, Sadeghi M, Nadi H. 72As, a powerful positron emitter for immunoimaging and receptor mapping: Study of the cyclotron production. RADIOCHEMISTRY 2011. [DOI: 10.1134/s1066362211040138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Qaim SM. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. ACTA ACUST UNITED AC 2011. [DOI: 10.1524/ract.2011.1870] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
In molecular imaging, the importance of novel longer lived positron emitters, also termed as non-standard or innovative PET radionuclides, has been constantly increasing, especially because they allow studies on slow metabolic processes and in some cases furnish the possibility of quantification of radiation dose in internal radiotherapy. Considerable efforts have been invested worldwide and about 25 positron emitters have been developed. Those efforts relate to interdisciplinary studies dealing with basic nuclear data, high current charged particle irradiation, efficient radiochemical separation and quality control of the desired radionuclide, and recovery of the enriched target material for reuse. In this review all those aspects are briefly discussed, with particular reference to three radionuclides, namely 64Cu, 124I and 86Y, which are presently in great demand. For each radionuclide several nuclear routes were investigated but the ( p,n) reaction on an enriched target isotope was found to be the best for use at a small-sized cyclotron. Some other positron emitting radionuclides, such as 55Co, 76Br, 89Zr, 82mRb, 94mTc, 120I, etc., were also produced via the low-energy (p,n), (p,α) or (d,n) reaction. On the other hand, the production of radionuclides 52Fe, 73Se, 83Sr, etc. using intermediate energy (p,xn) or (d,xn) reactions needs special consideration, the nuclear data and chemical processing methods being of key importance. In a few special cases, a high intensity 3He- or α-particle beam could be an added advantage. The production of some potentially interesting positron emitters via generator systems, for example 44Ti/44Sc, 72Se/72As and 140N d/140Pr is considered. The significance of new generation high power accelerators is briefly discussed.
Collapse
|
19
|
Uddin MS, Hermanne A, Sudár S, Aslam MN, Scholten B, Coenen HH, Qaim SM. Excitation functions of α-particle induced reactions on enriched 123Sb and (nat)Sb for production of 124I. Appl Radiat Isot 2010; 69:699-704. [PMID: 21227708 DOI: 10.1016/j.apradiso.2010.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/03/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
Abstract
Excitation functions of (α,xn) reactions on 98.28% enriched (123)Sb and on (nat)Sb were measured from 9 to 40 MeV. The data could be described well in terms of statistical and precompound models using the code TALYS. The discrepancies in the literature data for the formation of (125)I and (126)I were solved. The nuclear reaction (123)Sb(α,3n)(124)I on an enriched target appears to be interesting for the production of (124)I (T(1/2)=4.18 d) over the energy range E(α)=42→32 MeV, its yield being 11.7 MBq/μAh. The levels of the radionuclidic impurities (125)I and (126)I amount to 1.8% and 0.6%, respectively. The use of (nat)Sb as target material for (124)I production is unsuitable due to the high level of (123)I impurity.
Collapse
Affiliation(s)
- M S Uddin
- Institut für Neurowissenschaften und Medizin, INM: Nuklearchemie, Forschungszentrum Jülich, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Al-Abyad M, Spahn I, Qaim S. Experimental studies and nuclear model calculations on proton induced reactions on manganese up to 45MeV with reference to production of 55Fe, 54Mn and 51Cr. Appl Radiat Isot 2010; 68:2393-7. [DOI: 10.1016/j.apradiso.2010.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/11/2010] [Accepted: 06/11/2010] [Indexed: 12/01/2022]
|
21
|
Jahn M, Radchenko V, Filosofov DV, Hauser H, Eisenhut M, Rösch F, Jennewein M. Separation and purification of no-carrier-added arsenic from bulk amounts of germanium for use in radiopharmaceutical labelling. RADIOCHIM ACTA 2010. [DOI: 10.1524/ract.2010.1783] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Radioarsenic labelled radiopharmaceuticals could add special features to molecular imaging with positron emission tomography (PET). For example the long physical half-lives of 72As (T
1/2=26 h) and 74As (T
1/2=17.8 d) in conjunction with their high positron branching rates of 88% and 29%, respectively, allow the investigation of slow physiological or metabolical processes, like the enrichment and biodistribution of monoclonal antibodies in tumour tissue or the characterization of stem cell trafficking. A method for separation and purification of no-carrier-added (nca) arsenic from irradiated metallic germanium targets based on distillation and anion exchange is developed. It finally converts the arsenic into an *As(III) synthon in PBS buffer and pH 7 suitable for labelling of proteins via As-S bond formations. The method delivers radioarsenic in high purity with separation factors of 106 from germanium and an overall yield from target to labelling synthon of >40%. In a proof-of-principle experiment, the monoclonal antibody Bevacizumab, directed against the human VEGF receptor, was labelled with a radiochemical yield >90% within 1 h at room temperature with nca 72/74/77As.
Collapse
Affiliation(s)
- M. Jahn
- Johannes-Gutenberg-University of Mainz, Institute of Nuclear Chemistry, Mainz
| | - V. Radchenko
- Johannes-Gutenberg-University of Mainz, Institute of Nuclear Chemistry, Mainz, Deutschland
| | - D. V. Filosofov
- Joint Institute of Nuclear Research, Laboratory of Nuclear Problems, Dubna, Russische Föderation
| | - H. Hauser
- German Cancer Research Center, Radiopharmaceutical Chemistry, Heidelberg
| | - M. Eisenhut
- German Cancer Research Center, Radiopharmaceutical Chemistry, Heidelberg
| | | | - M. Jennewein
- Johannes Gutenberg University, Institute for Nuclear Chemistry, Mainz, Deutschland
| |
Collapse
|
22
|
Separation of radioarsenic from irradiated germanium oxide targets for the production of 71As and 72As. J Radioanal Nucl Chem 2010. [DOI: 10.1007/s10967-010-0699-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Uddin MS, Zaman MR, Hossain SM, Spahn I, Sudár S, Qaim SM. An Am/Be neutron source and its use in integral tests of differential neutron reaction cross-section data. Appl Radiat Isot 2010; 68:1656-61. [PMID: 20206536 DOI: 10.1016/j.apradiso.2010.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 01/27/2010] [Accepted: 02/05/2010] [Indexed: 11/30/2022]
Abstract
An Am/Be neutron source, installed recently at the Rajshahi University, is described. Neutron flux mapping was done using the nuclear reactions (197)Au(n,gamma)(198)Au, (113)In(n,gamma)(114m)In, (115)In(n,n'gamma)(115m)In and (58)Ni(n,p)(58)Co. An approximate validation of the neutron spectral shape was done using five neutron threshold detectors and the iterative unfolding code SULSA. Integral cross sections of the reactions (54)Fe(n,p)(54)Mn, (59)Co(n,p)(59)Fe and (92)Mo(n,p)(92m)Nb were measured with fast neutrons (E(n)>1.5MeV) and compared with data calculated using the neutron spectral distribution and the excitation function of each reaction given in data libraries: an agreement within +/-6% was found.
Collapse
Affiliation(s)
- M S Uddin
- Department of Applied Chemistry and Chemical Technology, Rajshahi University, Rajshahi, Bangladesh
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Affiliation(s)
- Jason P. Holland
- Radiochemistry Service, Department of Radiology, and Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Matthew J. Williamson
- Radiochemistry Service, Department of Radiology, and Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jason S. Lewis
- Radiochemistry Service, Department of Radiology, and Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
26
|
Spahn I, Steyn GF, Vermeulen C, Kovács Z, Szelecsényi F, Coenen HH, Qaim SM. New cross section measurements for production of the positron emitters 75Br and 76Br via intermediate energy proton induced reactions. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2009.1636] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|