1
|
Sedighi M, Mahmoudi Z, Ghasempour A, Shakibaie M, Ghasemi F, Akbari M, Abbaszadeh S, Mostafavi E, Santos HA, Shahbazi MA. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354:128-145. [PMID: 36599396 DOI: 10.1016/j.jconrel.2022.12.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
3
|
Chen J, Pantawane AR, Huang P, Liu J, Sankar A, Lin Y, Liu Y, Wu H, Luo S. One‐Pot Protection Strategy of Glucosamine to Assemble Building Blocks of Chitosan and Lipid A. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jyun‐Siao Chen
- Department of Chemistry National Chung Hsing University 402 Taichung Taiwan
| | | | - Po‐Hsun Huang
- Department of Chemistry National Chung Hsing University 402 Taichung Taiwan
| | - Jen‐Wei Liu
- Department of Chemistry National Chung Hsing University 402 Taichung Taiwan
| | - Arumugam Sankar
- Department of Chemistry National Chung Hsing University 402 Taichung Taiwan
| | - Yi‐Jyun Lin
- Department of Chemistry National Chung Hsing University 402 Taichung Taiwan
| | - Yu‐Hao Liu
- National Chutung Senior High School 310 Hsinchu Taiwan
| | - Hsin‐Ru Wu
- Instrumentation Center, MOST National Tsing Hua University 300 Hsinchu Taiwan
| | - Shun‐Yuan Luo
- Department of Chemistry National Chung Hsing University 402 Taichung Taiwan
| |
Collapse
|
4
|
Chen JS, Sankar A, Lin YJ, Huang PH, Liao CH, Wu SS, Wu HR, Luo SY. Phosphotungstic acid as a novel acidic catalyst for carbohydrate protection and glycosylation. RSC Adv 2019; 9:33853-33862. [PMID: 35528919 PMCID: PMC9073715 DOI: 10.1039/c9ra06170c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 01/28/2023] Open
Abstract
This work demonstrates the utilization of phosphotungstic acid (PTA) as a novel acidic catalyst for carbohydrate reactions, such as per-O-acetylation, regioselective O-4,6 benzylidene acetal formation, regioselective O-4 ring-opening, and glycosylation. These reactions are basic and salient during the synthesis of carbohydrate-based bioactive oligomers. Phosphotungstic acid's high acidity and eco-friendly character make it a tempting alternative to corrosive homogeneous acids. The various homogenous acid catalysts were replaced by the phosphotungstic acid solely for different carbohydrate reactions. It can be widely used as a catalyst for organic reactions as it is thermally stable and easy to handle. In our work, the reactions are operated smoothly under ambient conditions; the temperature varies from 0 °C to room temperature. Good to excellent yields were obtained in all four kinds of reactions.
Collapse
Affiliation(s)
- Jyun-Siao Chen
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Arumugam Sankar
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Yi-Jyun Lin
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Po-Hsun Huang
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| | - Chih-Hsiang Liao
- Taichung Municipal Feng Yuan Senior High School Taichung 420 Taiwan
| | - Shen-Shen Wu
- National Hsinchu Girls' Senior High School Hsinchu 300 Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center, National Tsing Hua University, MOST Hsinchu 300 Taiwan
| | - Shun-Yuan Luo
- Department of Chemistry, National Chung Hsing University Taichung 402 Taiwan
| |
Collapse
|
5
|
Bokhari TH, Roohi S, Hina S, Akbar MU, Sohaib M, Iqbal M. Synthesis, quality control, and bio-evaluation of 99m Tc-cyclophosphamide. Chem Biol Drug Des 2017; 91:456-462. [PMID: 28886237 DOI: 10.1111/cbdd.13107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/28/2017] [Accepted: 08/11/2017] [Indexed: 11/27/2022]
Abstract
Cancer is found to be the leading cause of death worldwide characterized by uncontrolled cell division. Nuclear medicines imaging using radiopharmaceuticals have pronounced potential for the diagnosis and treatment of cancers. Cyclophosphamide (CPH) is an antineoplastic drug which targets selectively cancer cells. In the present work, labeling of CPH with Tc-99m is performed for diagnostic purpose, which gave labeling yield as high as 99% using 20 μg SnCl2 ·2H2 O, 200 μg of ligand at pH 7 for 10 min reaction time at room temperature. The characterization of the prepared complex was performed using ITLC, electrophoresis, and HPLC. In vitro stability was analyzed in the presence of human serum at 37°C which has maximum value of 94 ± 0.5. The biodistribution studies of 99m Tc-CPH were performed in normal and tumor bearing Swiss Webster mice. The high accumulation of 99m Tc-CPH was observed in liver and tumours respectively at 4 hr after injection. Biodistribution results revealed that 99m Tc-CPH may be a potential tumour diagnostic agent simultaneously with chemotherapy.
Collapse
Affiliation(s)
| | - Samina Roohi
- IPD, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan
| | - Saira Hina
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | | | - Muhammad Sohaib
- Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, University of the Lahore, Lahore, Pakistan
| |
Collapse
|
6
|
Pant K, Sedláček O, Nadar RA, Hrubý M, Stephan H. Radiolabelled Polymeric Materials for Imaging and Treatment of Cancer: Quo Vadis? Adv Healthc Mater 2017; 6. [PMID: 28218487 DOI: 10.1002/adhm.201601115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/24/2016] [Indexed: 12/15/2022]
Abstract
Owing to their tunable blood circulation time and suitable plasma stability, polymer-based nanomaterials hold a great potential for designing and utilising multifunctional nanocarriers for efficient imaging and effective treatment of cancer. When tagged with appropriate radionuclides, they may allow for specific detection (diagnosis) as well as the destruction of tumours (therapy) or even customization of materials, aiming to both diagnosis and therapy (theranostic approach). This review provides an overview of recent developments of radiolabelled polymeric nanomaterials (natural and synthetic polymers) for molecular imaging of cancer, specifically, applying nuclear techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Different approaches to radiolabel polymers are evaluated from the methodical radiochemical point of view. This includes new bifunctional chelating agents (BFCAs) for radiometals as well as novel labelling methods. Special emphasis is given to eligible strategies employed to evade the mononuclear phagocytic system (MPS) in view of efficient targeting. The discussion encompasses promising strategies currently employed as well as emerging possibilities in radionuclide-based cancer therapy. Key issues involved in the clinical translation of radiolabelled polymers and future scopes of this intriguing research field are also discussed.
Collapse
Affiliation(s)
- Kritee Pant
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Ondřej Sedláček
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Robin A. Nadar
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| | - Martin Hrubý
- Institute of Macromolecular Chemistry; The Academy of Sciences of the Czech Republic; Heyrovského námeˇstí 2 16206 Prague 6 Czech Republic
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf; Institute of Radiopharmaceutical Cancer Research; Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|
7
|
Polyák A, Hajdu I, Bodnár M, Trencsényi G, Pöstényi Z, Haász V, Jánoki G, Jánoki GA, Balogh L, Borbély J. 99mTc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities. Int J Pharm 2013; 449:10-7. [DOI: 10.1016/j.ijpharm.2013.03.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 01/29/2023]
|
8
|
Tsao N, Chanda M, Yu DF, Kurihara H, Zhang YH, Mendez R, Yang DJ. ⁹⁹mTc-N4amG: synthesis biodistribution and imaging in breast tumor-bearing rodents. Appl Radiat Isot 2012. [PMID: 23208240 DOI: 10.1016/j.apradiso.2012.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
(99m)Tc-N4-guanine ((99m)Tc-N4amG) was synthesized and evaluated in this study. Cellular uptake and cellular fraction studies were performed to evaluate the cell penetrating ability. Biodistribution and planar imaging were conducted in breast tumor-bearing rats. Up to 17%ID uptake was observed in cellular uptake study with 40% of (99m)Tc-N4amG was accumulated in the nucleus. Biodistribution and scintigraphic imaging studies showed increased tumor/muscle count density ratios as a function of time. Our results demonstrate the feasibility of using (99m)Tc-N4amG in tumor specific imaging.
Collapse
Affiliation(s)
- Ning Tsao
- Division of Diagnostic Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Development of 68Ga-glycopeptide as an imaging probe for tumor angiogenesis. J Biomed Biotechnol 2011; 2011:267206. [PMID: 21541212 PMCID: PMC3085313 DOI: 10.1155/2011/267206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 02/15/2011] [Indexed: 11/30/2022] Open
Abstract
Objective. This study was aimed to study tissue distribution and tumor imaging potential of 68Ga-glycopeptide (GP) in tumor-bearing rodents by PET. Methods. GP was synthesized by conjugating glutamate peptide and chitosan. GP was labeled with 68Ga chloride for in vitro and in vivo studies. Computer outlined region of interest (counts per pixel) of the tumor and muscle (at the symmetric site) was used to determine tumor-to-muscle count density ratios. To ascertain the feasibility of 68Ga-GP in tumor imaging in large animals, PET/CT imaging of 68Ga-GP and 18F-FDG were conducted in New Zealand white rabbits bearing VX2 tumors. Standard uptake value of tumors were determined by PET up to 45 min. To determine blood clearance and half-life of 68Ga-GP, blood samples were collected from 10 seconds to 20 min. Results. Radiochemical purity of 68Ga-GP determined by instant thin-layer chromatography was >95%. Tumor uptake values (SUV) for 68Ga-GP and 18F-FDG in New Zealand white rabbits bearing VX2 tumors were 3.25 versus 7.04. PET images in tumor-bearing rats and rabbits confirmed that 68Ga-GP could assess tumor uptake. From blood clearance curve, the half-life of 68Ga-GP was 1.84 hr. Conclusion Our data indicate that it is feasible to use 68Ga-GP to assess tumor angiogenesis.
Collapse
|
10
|
Gok B, McGirt MJ, Sciubba DM, Garces-Ambrossi G, Nelson C, Noggle J, Bydon A, Witham TF, Wolinsky JP, Gokaslan ZL. ADJUVANT TREATMENT WITH LOCALLY DELIVERED ONCOGEL DELAYS THE ONSET OF PARESIS AFTER SURGICAL RESECTION OF EXPERIMENTAL SPINAL COLUMN METASTASIS. Neurosurgery 2009; 65:193-9; discussion 199-200. [DOI: 10.1227/01.neu.0000345948.54008.82] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Beril Gok
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | - Matthew J. McGirt
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | - Daniel M. Sciubba
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | | | - Clarke Nelson
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | - Joseph Noggle
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | - Ali Bydon
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | - Timothy F. Witham
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | - Jean-Paul Wolinsky
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| | - Ziya L. Gokaslan
- Department of Neurosurgery, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
11
|
Marques F, Gano L, Batista MKS, Gomes CAR, Gomes P, Santos I. Radiochemical and biological evaluation of novel153Sm/166Ho-amino acid-chitosan complexes. J Labelled Comp Radiopharm 2009. [DOI: 10.1002/jlcr.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|