Ding J, Zeng W, Hou S, Wang N, Yu C. Development of multi-detector soil radon measurement system based on IoT.
Appl Radiat Isot 2025;
218:111700. [PMID:
39893952 DOI:
10.1016/j.apradiso.2025.111700]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/11/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
A multi-detector soil radon measurement system based on IoT (the Internet of Things) has been developed for the specific application of long-term monitoring of soil radon concentration in remote mining areas. The system utilizes the scintillation chamber method to measure radon concentration, with SiPM (Silicon photomultiplier) for photoelectric conversion. This is combined with temperature compensation technology and 'triple-proof' protection measures to enhance the anti-interference capability of the instrument, thereby indirectly ensuring the accuracy of the measurement results. To address the issue of inconvenient data networking in the field, a complementary 'NB-IoT (Narrow Band Internet of Things) + Bluetooth' dual wireless network transmission method is employed. Additionally, the online monitoring and management platform for soil radon concentration on the cloud server enables online monitoring and management of data.The developed system demonstrated a sensitivity of 1.56 cph/(Bq/m³), a relative error of ≤10%, and an relative standard deviation (RSD) of ≤5.59%. Additionally, the system exhibited an endurance of 53 h when powered by a 12Ah battery and connected to three measurement nodes. The calibrated system has conducted long-term monitoring of radon concentration in a uranium mining area. The test and practical application demonstrate that the developed system meets the requirements of field data networking and the expansion of multiple detection nodes, operates reliably, and enables long-term continuous online monitoring of radon concentration at multiple depths of a single measuring point and multiple measuring points in a region. This provides effective data support for soil radon-related research.
Collapse