1
|
Le Fur M, Fougère O, Lepareur N, Rousseaux O, Tripier R, Beyler M. Tuning the lipophilic nature of pyclen-based 90Y3+ radiopharmaceuticals for β-radiotherapy. Metallomics 2021; 13:6445036. [PMID: 34850060 DOI: 10.1093/mtomcs/mfab070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/16/2021] [Indexed: 01/31/2023]
Abstract
Pyclen-dipicolinate chelates proved to be very efficient chelators for the radiolabeling with β--emitters such as 90Y. In this study, a pyclen-dipicolinate ligand functionalized with additional C12 alkyl chains was synthesized. The radiolabeling with 90Y proved that the addition of saturated carbon chains does not affect the efficiency of the radiolabeling, whereas a notable increase in lipophilicity of the resulting 90Y radiocomplex was observed. As a result, the compound could be extracted in Lipiodol® and encapsulated in biodegrable pegylated poly(malic acid) nanoparticles demonstrating the potential of lipophilic pyclen-dipicolinate derivatives as platforms for the design of radiopharmaceuticals for the treatment of liver or brain cancers by internal radiotherapy.
Collapse
Affiliation(s)
- Mariane Le Fur
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Olivier Fougère
- Guerbet group, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Nicolas Lepareur
- Univ Rennes, Centre Eugène Marquis, Inrae, Inserm, Institut NUMECAN [(Nutrition, Métabolismes et Cancer)]-UMR_A 1341, UMR_S 1241, Avenue de la Bataille Flandres, Dunkerque CS 44229, 35042 Rennes Cedex, France
| | - Olivier Rousseaux
- Guerbet group, Centre de Recherche d'Aulnay-sous-Bois, BP 57400, 95943 Roissy CdG Cedex, France
| | - Raphaël Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, 6 avenue Victor le Gorgeu, 29238 Brest, France
| |
Collapse
|
2
|
Labeling of Hinokitiol with 90Y for Potential Radionuclide Therapy of Hepatocellular Carcinoma. Processes (Basel) 2021. [DOI: 10.3390/pr9060940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver tumors, is the fifth cancer in the world in terms of incidence, and third in terms of mortality. Despite significant advances in the treatment of HCC, its prognosis remains bleak. Transarterial radioembolization with radiolabeled microspheres and Lipiodol has demonstrated significant effectiveness. Here we present a new, simple radiolabeling of Lipiodol with Yttrium-90, for the potential treatment of HCC.
Collapse
|
3
|
Bouvry C, Palard X, Edeline J, Ardisson V, Loyer P, Garin E, Lepareur N. Transarterial Radioembolization (TARE) Agents beyond 90Y-Microspheres. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1435302. [PMID: 30687734 PMCID: PMC6330886 DOI: 10.1155/2018/1435302] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
Liver malignancies, either primary tumours (mainly hepatocellular carcinoma and cholangiocarcinoma) or secondary hepatic metastases, are a major cause of death, with an increasing incidence. Among them, hepatocellular carcinoma (HCC) presents with a dark prognosis because of underlying liver diseases and an often late diagnosis. A curative surgical treatment can therefore only be proposed in 20 to 30% of the patients. However, new treatment options for intermediate to advanced stages, such as internal radionuclide therapy, seem particularly attractive. Transarterial radioembolization (TARE), which consists in the use of intra-arterial injection of a radiolabelled embolising agent, has led to very promising results. TARE with 90Y-loaded microspheres is now becoming an established procedure to treat liver tumours, with two commercially available products (namely, SIR-Sphere® and TheraSphere®). However, this technology remains expensive and is thus not available everywhere. The aim of this review is to describe TARE alternative technologies currently developed and investigated in clinical trials, with special emphasis on HCC.
Collapse
Affiliation(s)
- C. Bouvry
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, 35000 Rennes, France
| | - X. Palard
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inserm, LTSI (Laboratoire Traitement du Signal et de l'Image), UMR_S 1099, 35000 Rennes, France
| | - J. Edeline
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - V. Ardisson
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
| | - P. Loyer
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - E. Garin
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| | - N. Lepareur
- Comprehensive Cancer Centre Eugène Marquis, 35042 Rennes, France
- Univ Rennes, Inra, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, 35000 Rennes, France
| |
Collapse
|