1
|
Erden B, Sınmaz GK, Tanattı NP, Aksu M, Şengil İA. Investigation of the removal of diclofop methyl herbicide by peroxy electrocoagulation process and kinetic and cost analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29294-29303. [PMID: 38573582 PMCID: PMC11058591 DOI: 10.1007/s11356-024-33163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Pesticides containing chlorine, which are released during agricultural activities, are chemical substances that mix with surface and underground waters and have toxic, carcinogenic, and mutagenic effects on the entire living ecosystem. Due to their chemically stable structure, conventional water and wastewater treatment techniques such as coagulation, flocculation, and biological oxidation do not entirely remove these chemical substances. Therefore, before releasing them into the environmental receptor, these chemical substances must be transformed into harmless products or mineralized through advanced oxidation processes. When we look at the literature, there are not many studies on methods of removing diclofop methyl from aquatic media. Our study on the removal of diclofop methyl herbicide from aquatic media using the peroxy electrocoagulation method will provide the first information on this subject in the literature. In addition, this treatment method will contribute significantly to filling an important gap in the literature as an innovative approach for diclofop methyl removal. Moreover, peroxy electrocoagulation, which produces less sludge, provides treatment in a short time, and is economical, has been determined to be an advantageous process. The effects of conductivity, pH, H2O2 concentration, current, and time parameters on the removal of diclofop methyl were investigated using a GC-MS instrument. Kinetics, energy consumption, and cost calculations were also made. Under the optimum conditions determined (pH = 5, H2O2 = 500 mg/L, NaCl = 0.75 g/L, current density = 2.66 mA/cm2), the peroxydic electrocoagulation process resulted in a diclofop methyl removal efficiency of 79.2% after a 25-min reaction. When the experimental results were analyzed, it was found that the results fitted the pseudo-second-order kinetic model.
Collapse
Affiliation(s)
- Büşra Erden
- Department of Environmental Engineering, Sakarya University, 54100, Sakarya, Turkey.
| | | | - Nazire Pınar Tanattı
- Department of Environmental Protection Technologies, Sakarya University of Applied Sciences, 54100, Sakarya, Turkey
| | - Meryem Aksu
- Department of Environmental Engineering, Sakarya University, 54100, Sakarya, Turkey
| | - İsmail Ayhan Şengil
- Department of Environmental Engineering, Sakarya University, 54100, Sakarya, Turkey
| |
Collapse
|
2
|
Egerić M, Matović L, Savić M, Stanković S, Wu YN, Li F, Vujasin R. Gamma irradiation induced degradation of organic pollutants: Recent advances and future perspective. CHEMOSPHERE 2024; 352:141437. [PMID: 38364919 DOI: 10.1016/j.chemosphere.2024.141437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Different organic compounds in aquatic bodies have been recognized as an emerging issue in Environmental Chemistry. The gamma irradiation technique, as one of the advanced oxidation techniques, has been widely investigated in past decades as a technique for the degradation of organic molecules, such as dyes, pesticides, and pharmaceuticals, which show high persistence to degradation. This review gives an overview of what has been achieved so far using gamma irradiation for different organic compound degradations giving an explanation of the mechanisms of degradations as well as the corresponding limitations and drawbacks, and the answer to why this technique has not yet widely come to life. Also, a new approach, recently presented in the literature, regards coupling gamma irradiation with other techniques and materials, as the latest trend. A critical evaluation of the most recent advances achieved by coupling gamma irradiation with other methods and/or materials, as well as describing the reaction mechanisms of coupling, that is, additional destabilization of molecules achieved by coupling, emphasizing the advantages of the newly proposed approach. Finally, it was concluded what are the perspectives and future directions towards its commercialization since this technique can contribute to waste minimization i.e. not waste transfer to other media. Summarizing and generalization the model of radiolytic degradation with and without coupling with other techniques can further guide designing a new modular, mobile method that will satisfy all the needs for its wide commercial application.
Collapse
Affiliation(s)
- Marija Egerić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Ljiljana Matović
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; Center of Excellence "CEXTREME LAB", Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia; College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Marjetka Savić
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Srboljub Stanković
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Radojka Vujasin
- Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Zaouak A, Chouchane H, Jelassi H. Kinetic and mechanism investigation on the gamma irradiation induced degradation of quizalofop-p-ethyl. ENVIRONMENTAL TECHNOLOGY 2022; 43:4147-4155. [PMID: 34182888 DOI: 10.1080/09593330.2021.1944325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
An efficient gamma radiolytic decomposition of one of the extensively used herbicides in the world quizalofo-p-ethyl (QPE) was explored under different experimental conditions. Aqueous solutions of QPE were irradiated by gamma rays emitted by a Cobalt 60 source. QPE aqueous solutions were irradiated at doses of 0.5-3 kGy with 26.31 Gy min-1 dose rate. Obtained results indicated that removal efficiency of 98.5% and 73% of QPE were obtained, respectively, in absence and in presence of dissolved oxygen. Change of absorption spectra, pH effect and Total Organic Carbon (TOC) were carried out and studied. It was found that all absorption bands decreased with increasing irradiation dose and disappear totally after 3 kGy applied dose. Three pH conditions (pH = 10, pH = 6.2 and pH = 3) were applied in radiolytic degradation of QPE showing that the best removal efficiency has been found for neutral pH. Interestingly, the % TOC removal reaches 98% at 3 kGy indicated practically total mineralization. Furthermore, spectrophotometric analyses argued in favour of a pseudo-first-order kinetic of QPE degradation. The resulting apparent rate constant value is approximately kapp = (0.012 ± 0.001) min-1. Finally, several by-products such as 6-chloroquinoxalin -2-ol, 2-(4-hydroxy-phenyoxy) propionate, 1,4-hydroquinone, quinone, 4-chlorobenzene-1,2diol and 1,2,4-benzenetriol were identified by gas chromatography-mass spectrometry (GC/MS) evidencing that radiation process starting with the fragmentation of the molecule involving the hydroxyl radical, which is generated by the radiolysis of water. Based on the identification intermediates, a degradation mechanistic schema of QPE has been proposed.
Collapse
Affiliation(s)
- Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Haikel Jelassi
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Tunis, Tunisia
| |
Collapse
|
4
|
Zaouak A, Jebali S, Chouchane H, Jelassi H. Impact of gamma-irradiation on the degradation and mineralization of hydroxychloroquine aqueous solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2022; 20:6815-6824. [PMID: 35818409 PMCID: PMC9261233 DOI: 10.1007/s13762-022-04360-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/12/2022] [Accepted: 06/15/2022] [Indexed: 05/24/2023]
Abstract
In this work, the effect of gamma irradiation emitted by Cobalt 60 source has been investigated for the degradation of hydroxychloroquine (HCQ). The monitoring of the gamma irradiation treatment of HCQ aqueous solutions was followed by UV-visible, chemical oxygen demand, total organic carbon (TOC) and LC/MS analyses. Effects of several important parameters such as concentration, dose rate and pH on the degradation efficiency were studied then evaluated. Achieved results showed that % TOC removal efficiency of 98.5 was obtained after 8 kGy absorbed dose which warrants HCQ mineralization. The process was found to be more efficient when the initial pollutant concentration was low, with higher dose rate and at neutral pH. Furthermore, HCQ degradation kinetic study revealed a pseudo-first-order kinetic. Additionally, based on by-products identified by LC/MS, a degradation mechanistic schema mediated through hydroxyl radicals generated by water radiolysis has been proposed. Finally, in order to check the potential industrial application viability the energy consuming was evaluated.
Collapse
Affiliation(s)
- A. Zaouak
- Research Laboratory On Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technology, Sidi Thabet Technopark, 2020 Ariana, Tunisia
| | - S. Jebali
- Laboratoire National de Contrôle Des Médicaments, 11 Bis Rue Jebel Lakhdar Bab Saadoun, 1006 Tunis, Tunisia
| | - H. Chouchane
- Univ. Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020 Ariana, Tunisia
| | - H. Jelassi
- Research Laboratory On Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technology, Sidi Thabet Technopark, 2020 Ariana, Tunisia
| |
Collapse
|
5
|
Pandiselvam R, Kaavya R, Khanashyam AC, Divya V, Abdullah SK, Aurum FS, Dakshyani R, Kothakota A, Ramesh SV, Mousavi Khaneghah A. Research trends and emerging physical processing technologies in mitigation of pesticide residues on various food products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45131-45149. [PMID: 35474428 DOI: 10.1007/s11356-022-20338-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The application of pesticides enhances food production vastly, and it cannot be prevented; longer fresh produce is contaminated with health-threatening pesticides even though traditional processing methods can remove these pesticides from food surfaces to a certain extent; novel emerging technologies such as cold plasma, ultrasound, electrolyzed water, and pulsed electric field could more effectively dissipate the pesticide content in food without the release of toxic residual on the food surface. The present review focuses on applying emerging technologies to degrade pesticide residues in great utility in the food processing industries. This review also discusses the pesticide removal efficacy and its mechanism involved in these technologies. The oxidation principle in cold plasma is recently gaining more importance for the degradation of pesticide residue in the food processing industries. Analysis of the emerging physical processing methods indicated greater efficacy in eradicating pesticide residues during agriculture processing. Even though the technologies such as EO (99% reduction in dimethoate), ultrasound (98.96% for chlorpyrifos), and irradiation (99.8% for pesticide in aqueous solution) can achieve promising results in pesticide degradation level, the rate and inactivation highly depend on the type of equipment and processing parameters involved in different techniques, surface characteristics of produce, treatment conditions, and nature of the pesticide. Therefore, to effectively remove these health-threatening pesticides from food surfaces, it is necessary to know the process parameters and efficacy of the applied technology on various pesticides.
Collapse
Affiliation(s)
- Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Rathnakumar Kaavya
- Department of Food Engineering and Bioprocess Technology, Asian Institute of Technology, Pathumthani, 12120, Bangkok, Thailand
- Department of Food Technology, College of Food and Dairy Technology, TANUVAS, Chennai, 600052, Tamil Nadu, India
| | - Anandu Chandra Khanashyam
- Department of Food Science and Technology, Kasetsart University, 50 Ngamwongwan Road, Ladyao, 10900, Chatuchak, Bangkok, Thailand
| | - Valarivan Divya
- School of BioSciences and Technology, VIT University, Vellore, 632014, India
| | - Sajeeb Khan Abdullah
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Fawzan Sigma Aurum
- Indonesian Agency for Agricultural Research and Development (IAARD), Ministry of Agriculture Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian, Jakarta, Indonesia, 80222
- United Graduate School for Agricultural Science, Gifu University, Gifu, 500-8570, Japan
| | - Rajendran Dakshyani
- Department of Food Processing and Quality Control, Thassim Beevi Abdul Kader College for Women, KilakaraiRamanathapuram, Tamil Nadu, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695 019, Kerala, India
| | - Shunmugiah Veluchamy Ramesh
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, 671 124, Kerala, India
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
6
|
Zaouak A, Chouchane H, Jelassi H. Gamma irradiation-induced degradation and mineralization of methocarbamol in aqueous solution. ENVIRONMENTAL TECHNOLOGY 2022:1-8. [PMID: 35200109 DOI: 10.1080/09593330.2022.2046646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Gamma irradiation degradation of the extensively used muscle relaxant in the world methocarbamol (MET) was studied. MET aqueous solutions were irradiated by gamma rays emitted by a Cobalt 60 source at doses of 1-4 kGy. Our findings demonstrated that gamma irradiation degraded more than 98.5% of MET. Absorption spectra analysis revealed that when increased irradiation dose, the absorption bands declined with complete disappearance at 4 kGy dose. Additionally, the most radiolytic degradation rate was recorded at neutral pH, marked by Total Organic Carbon (TOC) removal rate of 98% reflecting the total mineralization of MET at 4 kGy. In-depth spectrophotometric analyses advocated a pseudo-first-order type of MET degradation kinetics. The obtained apparent rate constant value was kapp, MET = (0.02167 ± 0.0006) min-1. Gas chromatography-mass spectrometry (GC-MS) allowed the detection of 3-(o-methoxyphenoxy)-1,2 propanediol,2-methoxyphenol, 1,2,3 propanetriol, 1,2-dihydroxybenzene and 1,2,4 benzentriol identified as by-products generated during radiolytic degradation. Finally, an outline of the degradation mechanism was suggested according to the obtained by-products.
Collapse
Affiliation(s)
- Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Sidi Thabet Technopark 2020, Tunis, Tunisia
| | - Habib Chouchane
- University Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Haikel Jelassi
- Research Laboratory on Energy and Matter for Nuclear Science Development (LR16CNSTN02), National Center for Nuclear Science and Technologies, Sidi Thabet Technopark 2020, Tunis, Tunisia
| |
Collapse
|
7
|
Chi M, Wang H, Yan Z, Cao L, Gao X, Qin K. Magnetic Ligand Fishing Using Immobilized Cyclooxygenase-2 for Identification and Screening of Anticoronary Heart Disease Ligands From Choerospondias axillaris. Front Nutr 2022; 8:794193. [PMID: 35174196 PMCID: PMC8841743 DOI: 10.3389/fnut.2021.794193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibition of cyclooxygenase-2 (COX-2) activity is an effective way for treatment of coronary heart disease. And as an important source of COX-2 inhibitors, bioactive compounds of Choerospondias axillaris and pharmacological mechanisms remained lacking in prospective researches. Therefore, for the purpose of accelerating the discovery of natural products targeting designed inhibitors, the COX-2 microreactor composed of functionalized microspheres and magnetic ligand fishing was developed and applied in Choerospondias axillaris, and the physicochemical properties of the COX-2 functionalized microspheres were characterized using Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, the bioactive compounds singled out from ethanol decoction without prepurification were dissociated and identified by ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UPLC-Q-Exactive Orbitrap-MS/MS). Consequently, 21 bioactive compounds consisting of 6 organic acids, 8 flavonoids, and 7 others were separated and characterized from Choerospondias axillaris, which were reported to participate in the COX-2 inhibitory pathway to varying degrees. Therefore, this method could provide a prospective solution for the extraction and identification of active pharmaceutical ingredients and the rapid screening of some enzyme inhibitors in the complex mixtures.
Collapse
Affiliation(s)
- Miaomiao Chi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Hongsen Wang
- Jiangsu Original Drug Research and Development Co., Ltd., Lianyungang, China
| | - Zhankuan Yan
- Jiangsu Original Drug Research and Development Co., Ltd., Lianyungang, China
| | - Lei Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xun Gao
| | - Kunming Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Kunming Qin
| |
Collapse
|
8
|
Degradation mechanism of losartan in aqueous solutions under the effect of gamma radiation. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Sheikhi S, Dehghanzadeh R, Aslani H. Advanced oxidation processes for chlorpyrifos removal from aqueous solution: a systematic review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1249-1262. [PMID: 34150308 PMCID: PMC8172757 DOI: 10.1007/s40201-021-00674-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Chlorpyrifos (CPF), an organophosphate insecticide, due to its high efficiency and low cost is widely used in the agricultural industry. CPF may lead to lung deficiency, central nervous system damage, developmental and autoimmune disorders. In recent decades, the advanced oxidation processes (AOPs) have been considered in water and wastewater treatment due to their high efficiency in decomposition of organic and inorganic compounds, specially hardly biodegradable or non-biodegradable compounds. In the present review study, the most common AOPs (such as Fenton and Photo-Fenton processes, UV/H2O2 photolysis, UV/TiO2 heterogeneous photo catalysis, electrochemical processes, sonolysis technology, gamma irradiation technology and sulfate-based AOPs) applied for CPF removal from aqueous matrices has been investigated. It can be concluded that the use of AOPs are effective for CPF removal from aqueous media. In addition, Fenton and photocatalytic processes appear to be the most common techniques for CPF degradation.
Collapse
Affiliation(s)
- Samira Sheikhi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dehghanzadeh
- Department of Environmental Health Engineering, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Aslani
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Muneer M, Kanjal MI, Iqbal M, Saeed M, Khosa MK, Ud Den NZ, Ali S, Nazir A. Gamma and UV radiations induced treatment of anti-cancer methotrexate drug in aqueous medium: Effect of process variables on radiation efficiency evaluated using bioassays. Appl Radiat Isot 2020; 166:109371. [PMID: 33080553 DOI: 10.1016/j.apradiso.2020.109371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/20/2020] [Accepted: 08/09/2020] [Indexed: 12/26/2022]
Abstract
This studystudy focuses on the effect of radiation treatment and hydrogen peroxide (H2O2) on the toxicity of anticancer methotrexate. For cytotoxicity, different bioassays such as Allium cepa, hemolytic, brine shrimp were employed. The Ames test was used for mutagenicity analysis. The solutions having concentrations 5, 10 and 15 ppm were irradiated with UV radiation exposure time 15, 30, 45, 60, 75 and 90 min and gamma radiation absorbed doses 0.3, 0.6, 0.9, 1.2, 2, 3 and 4 kGy in combination with with H2O2. There was a clear difference observed for aqueous solution before and after treatment with reference to cytotoxicity and mutagenicity. In Allium cepa test, a 47.07, 44.36 and 38.23% increase in root length (RL), root count (RC) and mitotic index (MI) was observed, respectively, for UV/H2O2 treatment and in the case of gamma/H2O2 treatment, the RL, RC and MI were increased up to 49.39, 52.63 and 52.38%, respectively. Brine shrimp test has shown 85.95 and 91.30% decrease in toxicity using UV/H2O2 and gamma/H2O2 respectively, while hemolytic test has shown 19.21 and 26.32% hemolysis using UV/H2O2 and gamma/H2O2, respectively. The mutagenicity reduced up to 82.3, 86.46 and 89.59% (TA98) and 85.42, 87.5 and 90.63% (TA100) for UV/H2O2 while 89.59, 90.63 and 93.75% (TA98) and 84.38, 89.59 and 92.71% (TA100) for gamma/H2O2. The UV and gamma radiation along with H2O2 based AOPs are promising approaches to detoxify the wastewater which can be extended to real hospital liquid effluent effectively.
Collapse
Affiliation(s)
- Majid Muneer
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan.
| | | | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore, 53700, Pakistan.
| | - Muhammad Saeed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | | | - Nighat Zia Ud Den
- Department of Biochemistry, Government College University Faisalabad, 38000, Pakistan
| | - Saddaqat Ali
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, 53700, Pakistan
| |
Collapse
|