1
|
Takeno S, Yoshino Y, Aihara T, Higashino M, Kanai Y, Hu N, Kakino R, Kawata R, Nihei K, Ono K. Preliminary outcomes of boron neutron capture therapy for head and neck cancers as a treatment covered by public health insurance system in Japan: Real-world experiences over a 2-year period. Cancer Med 2024; 13:e7250. [PMID: 38826090 PMCID: PMC11145025 DOI: 10.1002/cam4.7250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/04/2024] Open
Abstract
PURPOSE Since June 2020, boron neutron capture therapy (BNCT) has been a health care service covered by health insurance in Japan to treat locally advanced or recurrent unresectable head and neck cancers. Therefore, we aimed to assess the clinical outcomes of BNCT as a health insurance treatment and explore its role among the standard treatment modalities for head and neck cancers. MATERIALS AND METHODS We retrospectively analyzed data from patients who were treated using BNCT at Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, between June 2020 and May 2022. We assessed objective response rates based on the Response Evaluation Criteria in Solid Tumors version 1.1, and adverse events based on the Common Terminology Criteria for Adverse Events, version 5.0. Additionally, we conducted a survival analysis and explored the factors that contributed to the treatment results. RESULTS Sixty-nine patients (72 treatments) were included in the study, with a median observation period of 15 months. The objective response rate was 80.5%, and the 1-year locoregional control, progression-free survival, and overall survival rates were 57.1% (95% confidence interval [CI]: 43.9%-68.3%), 42.2% (95% CI: 30.1%-53.8%), and 75.4% (95% CI: 62.5%-84.5%), respectively. Locoregional control was significantly longer in patients with earlier TNM staging and no history of chemotherapy. CONCLUSIONS BNCT may be an effective treatment option for locally advanced or recurrent unresectable head and neck cancers with no other definitive therapies. If definitive surgery or radiation therapy are not feasible, BNCT should be considered at early disease stages.
Collapse
Affiliation(s)
- Satoshi Takeno
- Department of Radiation OncologyOsaka Medical and Pharmaceutical UniversityOsakaJapan
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yuki Yoshino
- Department of Radiation OncologyOsaka Medical and Pharmaceutical UniversityOsakaJapan
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Teruhito Aihara
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
- Department of Otorhinolaryngology – Head and Neck SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Masaaki Higashino
- Department of Otorhinolaryngology – Head and Neck SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Yasukazu Kanai
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
- BNCT Joint Clinical InstituteOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Naonori Hu
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
- Institute for Integrated Radiation and Nuclear ScienceKyoto UniversityOsakaJapan
| | - Ryo Kakino
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Ryo Kawata
- Department of Otorhinolaryngology – Head and Neck SurgeryOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Keiji Nihei
- Department of Radiation OncologyOsaka Medical and Pharmaceutical UniversityOsakaJapan
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
| | - Koji Ono
- Kansai BNCT Medical CenterOsaka Medical and Pharmaceutical UniversityOsakaJapan
- BNCT Joint Clinical InstituteOsaka Medical and Pharmaceutical UniversityOsakaJapan
| |
Collapse
|
2
|
Watabe T, Ose N, Naka S, Fukui E, Kimura T, Kanou T, Funaki S, Sasaki H, Kamiya T, Kurimoto K, Isohashi K, Tatsumi M, Shimosegawa E, Kato H, Ohgaki R, Kanai Y, Shintani Y. Evaluation of LAT1 Expression in Patients With Lung Cancer and Mediastinal Tumors: 18F-FBPA PET Study With Immunohistological Comparison. Clin Nucl Med 2023; 48:853-860. [PMID: 37682600 DOI: 10.1097/rlu.0000000000004816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE OF THE REPORT L-type amino acid transporter-1 (LAT1) is a tumor-specific transporter expressed in various tumor types, with minimal expression in normal organs. We previously demonstrated 18F-fluoro-borono-phenylalanine (18F-FBPA) as a selective PET probe for LAT1 in a preclinical study. Herein, we evaluated LAT1 expression in preoperative patients with lung or mediastinal tumors using 18F-FBPA PET and immunofluorescence staining. PATIENTS AND METHODS The study population included patients with histopathological diagnosis (n = 55): primary lung cancers (n = 21), lung metastases (n = 6), mediastinal tumors (n = 15), and benign lesion (n = 13). PET scanning was performed 1 hour after the injection of 18F-FBPA (232 ± 32 MBq). Immunofluorescence staining was performed on the resected tumor sections using LAT1 antibody. LAT1 staining was graded on a 4-grade scale and compared with the SUVmax on 18F-FBPA PET. RESULTS A positive correlation was observed between the SUVmax of 18F-FBPA PET and LAT1 expression by immunofluorescence staining (r = 0.611, P < 0.001). The SUVmax of 18F-FBPA was 3.92 ± 1.46 in grade 3, 3.21 ± 1.82 in grade 2, 2.33 ± 0.93 in grade 1, and 1.50 ± 0.39 in grade 0 of LAT1 expression. Although 18F-FBPA PET showed variable uptake in lung cancers and mediastinal tumors, benign lesions showed significantly lower SUVmax than those in malignant lesions (P < 0.01). CONCLUSIONS Uptake on 18F-FBPA PET reflected the expression level of LAT1 in lung and mediastinal tumors. It was suggested that 18F-FBPA PET can be used for the precise characterization of the tumor in pretreatment evaluation.
Collapse
Affiliation(s)
| | - Naoko Ose
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | | | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | - Toru Kimura
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | - Takashi Kanou
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| | | | | | | | | | | | | | | | - Ryuichi Ohgaki
- Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshikatsu Kanai
- Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University
| |
Collapse
|
3
|
Nakaichi T, Nakamura S, Ito K, Takahashi K, Takemori M, Kashihara T, Kunito K, Murakami N, Iijima K, Chiba T, Nakayama H, Mikasa S, Nishio T, Okamoto H, Itami J, Kurihara H, Igaki H. Analyzing spatial distribution between 18F-fluorodeoxyglucose and 18F-boronophenylalanine positron emission tomography to investigate selection indicators for boron neutron capture therapy. EJNMMI Phys 2022; 9:89. [PMID: 36536190 PMCID: PMC9763526 DOI: 10.1186/s40658-022-00514-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND 18F-FDG PET is often utilized to determine BNCT selection due to the limited availability of 18F-BPA PET, which is performed by synthesizing 18F into the boron drug used for BNCT, although the uptake mechanisms between those are different. Additionally, only a few non-spatial point parameters, such as maximum SUV (SUVmax), have reported a correlation between those in previous studies. This study aimed to investigate the spatial accumulation pattern between those PET images in tumors, which would be expected to either show higher uptake on 18F-BPA PET or be utilized in clinical, to verify whether 18F-FDG PET could be used as a selection indicator for BNCT. METHODS A total of 27 patients with 30 lesions (11 squamous cell carcinoma, 9 melanoma, and 10 rhabdomyosarcoma) who received 18F-FDG and 18F-BPA PET within 2 weeks were enrolled in this study. The ratio of metabolic tumor volumes (MTVs) to GTV, histogram indices (skewness/kurtosis), and the correlation of total lesion activity (TLA) and non-spatial point parameters (SUVmax, SUVpeak, SUVmin, maximum tumor-to-normal tissue ratio (Tmax/N), and Tmin/N) were evaluated. After local rigid registration between those images, distances of locations at SUVmax and the center of mass with MTVs on each image and similarity indices were also assessed along its coordinate. RESULTS In addition to SUVmax, SUVpeak, and Tmax/N, significant correlations were found in TLA. The mean distance in SUVmax was [Formula: see text] and significantly longer than that in the center of mass with MTVs. The ratio of MTVs to GTV, skewness, and kurtosis were not significantly different. However, the similarities of MTVs were considerably low. The similarity indices of Dice similarity coefficient, Jaccard coefficient, and mean distance to agreement for MTV40 were [Formula: see text], [Formula: see text], and [Formula: see text] cm, respectively. Furthermore, it was worse in MTV50. In addition, spatial accumulation patterns varied in cancer types. CONCLUSIONS Spatial accumulation patterns in tumors showed low similarity between 18F-FDG and 18F-BPA PET, although the various non-spatial point parameters were correlated. In addition, the spatial accumulation patterns were considerably different in cancer types. Therefore, the selection for BNCT using 18F-FDG PET should be compared carefully with using 18F-FBPA PET.
Collapse
Affiliation(s)
- Tetsu Nakaichi
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Satoshi Nakamura
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.136593.b0000 0004 0373 3971Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka 565-0871 Japan
| | - Kimiteru Ito
- grid.272242.30000 0001 2168 5385Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kana Takahashi
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Mihiro Takemori
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.265074.20000 0001 1090 2030Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo 116-8551 Japan
| | - Tairo Kashihara
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kouji Kunito
- Euro MediTech Co., Ltd., 2-20-4, Higashigotanda, Shinagawa-ku, Tokyo 141-0022 Japan
| | - Naoya Murakami
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Kotaro Iijima
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Takahito Chiba
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.265074.20000 0001 1090 2030Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo 116-8551 Japan
| | - Hiroki Nakayama
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.265074.20000 0001 1090 2030Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-ogu, Arakawa-ku, Tokyo 116-8551 Japan
| | - Shohei Mikasa
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Teiji Nishio
- grid.136593.b0000 0004 0373 3971Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, Yamadaoka 1-7, Suita City, Osaka 565-0871 Japan
| | - Hiroyuki Okamoto
- grid.272242.30000 0001 2168 5385Radiation Safety and Quality Assurance Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Jun Itami
- grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| | - Hiroaki Kurihara
- grid.414944.80000 0004 0629 2905Department of Diagnostic Radiology, Kanagawa Cancer Center, 2-3-2 Nakano, Asahi-ku, Yokohama, Kanagawa 241-8515 Japan
| | - Hiroshi Igaki
- grid.272242.30000 0001 2168 5385Division of Research and Development for Boron Neutron Capture Therapy, National Cancer Center Exploratory Oncology Research and Clinical Trial Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan ,grid.272242.30000 0001 2168 5385Department of Radiation Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan
| |
Collapse
|
4
|
Isohashi K, Kanai Y, Aihara T, Hu N, Fukushima K, Baba I, Hirokawa F, Kakino R, Komori T, Nihei K, Hatazawa J, Ono K. Exploration of the threshold SUV for diagnosis of malignancy using 18F-FBPA PET/CT. Eur J Hybrid Imaging 2022; 6:35. [DOI: 10.1186/s41824-022-00156-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Abstract
Background
The goal of the study was to evaluate the diagnostic ability of 18F-FBPA PET/CT for malignant tumors. Findings from 18F-FBPA and 18F-FDG PET/CT were compared with pathological diagnoses in patients with malignant tumors or benign lesions.
Methods
A total of 82 patients (45 males, 37 females; median age, 63 years; age range, 20–89 years) with various types of malignant tumors or benign lesions, such as inflammation and granulomas, were examined by 18F-FDG and 18F-FBPA PET/CT. Tumor uptake of FDG or FBPA was quantified using the maximum standardized uptake value (SUVmax). The final diagnosis was confirmed by cytopathology or histopathological findings of the specimen after biopsy or surgery. A ROC curve was constructed from the SUVmax values of each PET image, and the area under the curve (AUC) and cutoff values were calculated.
Results
The SUVmax for 18F-FDG PET/CT did not differ significantly for malignant tumors and benign lesions (10.9 ± 6.3 vs. 9.1 ± 2.7 P = 0.62), whereas SUVmax for 18F-FBPA PET/CT was significantly higher for malignant tumors (5.1 ± 3.0 vs. 2.9 ± 0.6, P < 0.001). The best SUVmax cutoffs for distinguishing malignant tumors from benign lesions were 11.16 for 18F-FDG PET/CT (sensitivity 0.909, specificity 0.390) and 3.24 for 18F-FBPA PET/CT (sensitivity 0.818, specificity 0.753). ROC analysis showed significantly different AUC values for 18F-FDG and 18F-FBPA PET/CT (0.547 vs. 0.834, p < 0.001).
Conclusion
18F-FBPA PET/CT showed superior diagnostic ability over 18F-FDG PET/CT in differential diagnosis of malignant tumors and benign lesions. The results of this study suggest that 18F-FBPA PET/CT diagnosis may reduce false-positive 18F-FDG PET/CT diagnoses.
Collapse
|
5
|
Tang F, Wei Y, Zhang S, Wang J, Gu W, Tang F, Peng X, Wei Y, Liu J, Chen W, Zhang S, Gu L, Li Y. Evaluation of Pharmacokinetics of Boronophenylalanine and Its Uptakes in Gastric Cancer. Front Oncol 2022; 12:925671. [PMID: 35903711 PMCID: PMC9314552 DOI: 10.3389/fonc.2022.925671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Boron neutron capture therapy (BNCT), a cellular-level particle radiation therapy, combines boron compounds selectively delivered to tumor tissue with neutron irradiation. Boronophenylalanine (BPA) is a boron compound widely used in malignant melanoma, malignant brain tumors, and recurrent head and neck cancer. However, neither basic nor clinical research was reported for the treatment of gastric cancer using BPA. Selective distribution of boron in tumors rather than that in blood or normal tissue prior to neutron irradiation is required for the successful treatment of BNCT. This study evaluated the pharmacokinetics and safety of 10B-labeled BPA (10B-BPA, abbreviated as BPA) and its uptakes in gastric cancer. Pharmacokinetics and safety were evaluated in Sprague–Dawley (SD) rats intravenously injected with BPA. The uptakes of boron in gastric cancer cell line MKN45 and in cell-derived xenografts (CDX) and patient-derived xenografts (PDX) animal models were measured. The results showed that the boron concentration in the blood of rats decreased fast in the first 30 min followed by a steady decrease following the observation time, having a half-life of 44.11 ± 8.90 min and an AUC-last of 815.05 ± 62.09 min×μg/ml. The distribution of boron in different tissues (heart, liver, lung, stomach, and small intestine) of rats revealed a similar pattern in blood except for that in the brain, kidney, and bladder. In MKN45 cells, boron concentration increased in a time- and concentration-dependent manner. In both CDX and PDX animal models, the boron is preferentially distributed in tumor tissue rather than in blood or normal tissues. In addition, BPA had no significant adverse effects in rats. Taken together, the results suggested that BPA revealed a fast decrease in boron concentration in rats and is more likely to distribute in tumor cells and tissue.
Collapse
Affiliation(s)
- Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
| | - Yujie Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianrong Wang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjiao Gu
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Fenxia Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaohuan Peng
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Yucai Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiangyan Liu
- Nuclear Medicine Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Weiqiang Chen
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiotherapy Technology, Lanhai Nuclear Medicine Research Center, Putian, China
| | - Shixu Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Long Gu,
| | - Yumin Li
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
- *Correspondence: Yumin Li, ; Long Gu,
| |
Collapse
|