1
|
Singh R, Yadav D, Ingole PG, Ahn YH. Magnetic engineering nanoparticles: Versatile tools revolutionizing biomedical applications. BIOMATERIALS ADVANCES 2024; 163:213948. [PMID: 38959651 DOI: 10.1016/j.bioadv.2024.213948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
The use of nanoparticles has increased significantly over the past few years in a number of fields, including diagnostics, biomedicine, environmental remediation, and water treatment, generating public interest. Among various types of nanoparticles, magnetic nanoparticles (MNPs) have emerged as an essential tool for biomedical applications due to their distinct physicochemical properties compared to other nanoparticles. This review article focuses on the recent growth of MNPs and comprehensively reviews the advantages, multifunctional approaches, biomedical applications, and latest research on MNPs employed in various biomedical techniques. Biomedical applications of MNPs hold on to their ability to rapidly switch magnetic states under an external field at room temperature. Ideally, these MNPs should be highly susceptible to magnetization when the field is applied and then lose that magnetization just as quickly once the field is removed. This unique property allows MNPs to generate heat when exposed to high-frequency magnetic fields, making them valuable tools in developing treatments for hyperthermia and other heat-related illnesses. This review underscores the role of MNPs as tools that hold immense promise in transforming various aspects of healthcare, from diagnostics and imaging to therapeutic treatments, with discussion on a wide range of peer-reviewed articles published on the subject. At the conclusion of this work, challenges and potential future advances of MNPs in the biomedical field are highlighted.
Collapse
Affiliation(s)
- Randeep Singh
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Diksha Yadav
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Jermy BR, Khan F, Ravinayagam V, Almessiere M, Slimani Y, Hassan M, Homeida A, Al-Suhaimi E, Baykal A. Multifunctional CoCe/silica and CoMnCe/silica spinel ferrite nanocomposite: in vitro and in vivo evaluation for cancer therapy. NANO-STRUCTURES & NANO-OBJECTS 2024; 39:101251. [DOI: 10.1016/j.nanoso.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
3
|
Vizcarra-Ramos S, Molina-Pineda A, Gutiérrez-Ortega A, Herrera-Rodríguez SE, Aguilar-Lemarroy A, Jave-Suárez LF, López Z, Cano ME, Hernández-Gutiérrez R. Synergistic Strategies in Prostate Cancer Therapy: Electrochemotherapy and Electromagnetic Hyperthermia. Pharmaceutics 2024; 16:1109. [PMID: 39339147 PMCID: PMC11435295 DOI: 10.3390/pharmaceutics16091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer is a significant global health problem, being the second most common cancer and the fifth leading cause of death in men worldwide. Standard chemotherapy, though effective, often lacks selectivity for tumor cells, resulting in dose-limiting side effects. To address this, innovative biomedical approaches such as electrochemotherapy and electromagnetic hyperthermia have emerged. Electrochemotherapy improves drug delivery by facilitating electroporation, thereby increasing intracellular concentrations of chemotherapeutic agents. This approach reduces dosages and associated adverse effects. Meanwhile, electromagnetic hyperthermia raises the temperature of tumor cells, enhancing their sensitivity to chemotherapy. While previous research has demonstrated the inhibitory effects of magnetic hyperthermia on prostate cancer cell growth both in vitro and in vivo, and its synergy with chemotherapy has shown enhanced tumor remission, limited studies have focused on electrochemotherapy alone or in combination with hyperthermia in prostate cancer models. This study aims to assess the synergistic effects of electromagnetic hyperthermia, with superparamagnetic iron oxide nanoparticles (SPIONs) and electrochemotherapy, with electroporation and the chemotherapeutic drugs bleomycin and cisplatin, on the prostate cancer-derived cell line DU-145/GFP and prostate-derived cell line RWPE-1. Results indicate enhanced cytotoxicity with both treatments (bleomycin and cisplatin) by adding electroporation, demonstrating a particularly pronounced effect with bleomycin. Combining electroporation with hyperthermia significantly augments cytotoxicity. Moreover, electroporation effectively reduced the time of exposure to electromagnetic hyperthermia while magnifying its cytotoxic effects. Future research in in vivo trials may reveal additional insights into the combined effects of these therapies.
Collapse
Affiliation(s)
- Sayma Vizcarra-Ramos
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (S.V.-R.); (A.G.-O.); (S.E.H.-R.)
| | - Andrea Molina-Pineda
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (S.V.-R.); (A.G.-O.); (S.E.H.-R.)
| | - Abel Gutiérrez-Ortega
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (S.V.-R.); (A.G.-O.); (S.E.H.-R.)
| | - Sara E. Herrera-Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (S.V.-R.); (A.G.-O.); (S.E.H.-R.)
| | - Adriana Aguilar-Lemarroy
- Centro de Investigación Biomédica de Occidente (CIBO), División de Inmunología, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico; (A.A.-L.); (L.F.J.-S.)
| | - Luis F. Jave-Suárez
- Centro de Investigación Biomédica de Occidente (CIBO), División de Inmunología, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico; (A.A.-L.); (L.F.J.-S.)
| | - Zaira López
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Ocotlan 47810, Mexico; (Z.L.); (M.E.C.)
| | - Mario E. Cano
- Centro Universitario de la Ciénega, Universidad de Guadalajara, Avenida Universidad 1115, Ocotlan 47810, Mexico; (Z.L.); (M.E.C.)
| | - Rodolfo Hernández-Gutiérrez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ), Guadalajara 44270, Mexico; (S.V.-R.); (A.G.-O.); (S.E.H.-R.)
| |
Collapse
|
4
|
Molaei MJ. Magnetic hyperthermia in cancer therapy, mechanisms, and recent advances: A review. J Biomater Appl 2024; 39:3-23. [PMID: 38606627 DOI: 10.1177/08853282241244707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Hyperthermia therapy refers to the elevating of a region in the body for therapeutic purposes. Different techniques have been applied for hyperthermia therapy including laser, microwave, radiofrequency, ultrasonic, and magnetic nanoparticles and the latter have received great attention in recent years. Magnetic hyperthermia in cancer therapy aims to increase the temperature of the body tissue by locally delivering heat from the magnetic nanoparticles to cancer cells with the aid of an external alternating magnetic field to kill the cancerous cells or prevent their further growth. This review introduces magnetic hyperthermia with magnetic nanoparticles. It includes the mechanism of the operation and magnetism behind the magnetic hyperthermia phenomenon. Different synthesis methods and surface modification to enhance the biocompatibility, water solubility, and stability of the nanoparticles in physiological environments have been discussed. Recent research on versatile types of magnetic nanoparticles with their ability to increase the local temperature has been addressed.
Collapse
Affiliation(s)
- Mohammad Jafar Molaei
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
5
|
Sherief HH, Zaky MF, Abbas MF, Mahrous SA. Mathematical modeling of heat transfer in tissues with skin tumor during thermotherapy. PLoS One 2024; 19:e0298256. [PMID: 38753701 PMCID: PMC11098337 DOI: 10.1371/journal.pone.0298256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 05/18/2024] Open
Abstract
The study of thermal therapy to tumors and the response of living cells to this therapy used to treat tumor is very important due to the complexity of heat transfer in biological tissues. In the past few years, there has been a growing interest among clinicians, mathematicians, and engineers regarding the use of computational and mathematical methods to simulate biological systems. Numerous medical proceedings also employ mathematical modeling and engineering techniques as a means to guarantee their safety and evaluate the associated risks effectively. This manuscript provides an analytical solution used for the first time to study the mechanism of biological thermal response during heat therapy on spheroidal skin tumor. The proposed method used a generalized thermoelasticity model with one relaxation time. The influence of relaxation times on the responses of diseased and healthy tissues is studied and interpreted graphically. Also, the impact of different laser irradiance on the thermal profile of the malignant tumor cells over a period of 2 minutes is interpreted graphically. To investigate the transfer of heat within biological tissues during the thermal therapy, the Laplace transform and inverse Laplace transform methods were applied. A comparison of the present generalized thermoelasticity model and different models based on Pennes bioheat transfer PBT shows that our proposed model yields more realistic and accurate predictions. The current model can be used to explain various therapeutic methods.
Collapse
Affiliation(s)
- Hany H. Sherief
- Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed F. Zaky
- Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed F. Abbas
- Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Samar A. Mahrous
- Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
6
|
Bonome P, Pezzulla D, Lancellotta V, Scrofani AR, Macchia G, Rodolfino E, Tagliaferri L, Kovács G, Deodato F, Iezzi R. Combination of Local Ablative Techniques with Radiotherapy for Primary and Recurrent Lung Cancer: A Systematic Review. Cancers (Basel) 2023; 15:5869. [PMID: 38136413 PMCID: PMC10741973 DOI: 10.3390/cancers15245869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In patients with early-stage or recurrent NSCLC who are unable to tolerate surgery, a benefit could derive only from a systemic therapy or another few forms of local therapy. A systematic review was performed to evaluate the feasibility and the effectiveness of radiotherapy combined with local ablative therapies in the treatment of primary and recurrent lung cancer in terms of toxicity profile and local control rate. Six studies featuring a total of 115 patients who met eligibility criteria and 119 lesions were included. Three studies evaluated lung cancer patients with a medically inoperable condition treated with image-guided local ablative therapies followed by radiotherapy: their local control rate (LC) ranged from 75% to 91.7% with only 15 patients (19.4%) reporting local recurrence after combined modality treatment. The other three studies provided a salvage option for patients with locally recurrent NSCLC after RT: the median follow-up period varied from 8.3 to 69.3 months with an LC rate ranging from 50% to 100%. The most common complications were radiation pneumonitis (9.5%) and pneumothorax (29.8%). The proposed intervention appears to be promising in terms of toxicity profile and local control rate. Further prospective studies are need to better delineate combining LTA-RT treatment benefits in this setting.
Collapse
Affiliation(s)
- Paolo Bonome
- Radiation Oncology Unit, Responsible Research Hospital, 86100 Campobasso, Italy; (D.P.); (G.M.); (F.D.)
| | - Donato Pezzulla
- Radiation Oncology Unit, Responsible Research Hospital, 86100 Campobasso, Italy; (D.P.); (G.M.); (F.D.)
| | - Valentina Lancellotta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (V.L.); (L.T.)
| | - Anna Rita Scrofani
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radiologia d’Urgenza ed Interventistica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.R.S.); (R.I.)
| | - Gabriella Macchia
- Radiation Oncology Unit, Responsible Research Hospital, 86100 Campobasso, Italy; (D.P.); (G.M.); (F.D.)
| | - Elena Rodolfino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radiologia Addomino-Pelvica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Luca Tagliaferri
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (V.L.); (L.T.)
| | - György Kovács
- Gemelli-INTERACTS, Università Cattolica del Sacro Cuore, 20123 Rome, Italy;
| | - Francesco Deodato
- Radiation Oncology Unit, Responsible Research Hospital, 86100 Campobasso, Italy; (D.P.); (G.M.); (F.D.)
- Radiology Institute, Università Cattolica del Sacro Cuore, 00135 Rome, Italy
| | - Roberto Iezzi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radiologia d’Urgenza ed Interventistica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (A.R.S.); (R.I.)
| |
Collapse
|